• Title/Summary/Keyword: Power System Control and Operation

Search Result 1,997, Processing Time 0.027 seconds

Demonstration of Voltage Control of DC Distribution System Using Real-time DC Network Analysis Applications (실시간 DC 계통해석 응용프로그램을 이용한 DC 배전망 전압제어 실증 연구)

  • Kim, Hong-joo;Cho, Young-pyo;Cho, Jin-tae;Kim, Ju-yong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.275-286
    • /
    • 2019
  • This paper presents real-time Direct Current (DC) network analysis applications for operation of DC distribution system or DC microgrid. These applications are installed on central Energy Management System (EMS) and provide solutions of DC network operation. To analysis DC distribution network, this paper proposes composition and sequence of applications. Algorithm of applications is presented in this paper. Demonstration tests are performed on DC distribution site in Gochang Power Testing Center of Korea Electric Power Corporation (KEPCO). To verify the performance, developed DC applications installed on EMS. Scenarios for demonstration test of voltage control are presented. Finally, measured data, application output data and simulation data (by PSCAD/EMTDC) are compared and analyze accuracy of applications.

Development of Electric Power Management System for Electric Furnace (전기로 전력관리 시스템 개발)

  • Min, Byeong-Yong;Kim, Ho-Jin;Kwon, Yong-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.904-907
    • /
    • 2013
  • Demand Controller is a control device that if current electric power consumption seems to exceed the targeted amount of electric power, block the connected load devices. When this ON/OFF way is applied to electric power management of electric furnace, start and stop operation of inverter and an electric heater which supplying electric power is being performed repeatedly. This has a problem of life-shortening of inverter and an electric heater by electrical damage. In addition, when electric power supplying is blocked, attemperation is not allowed until return to normal operation condition. In this paper, we develop power management system for electric furnace using the electric furnace remote controller. This system provides the automatic control for approved electric power to electric furnace organically and prevent electric damage of inverter and an electric heater through continuous electric power supply within the targeted amount of electric power.

  • PDF

Frequency and Voltage Control Strategies of the Jeju Island Power System Based on MMC-HVDC Systems

  • Quach, Ngoc-Thinh;Chae, Sang Heon;Song, Seung-Ho;Kim, Eel-Hwan
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.204-211
    • /
    • 2018
  • At present, one of two LCC-HVDC systems is responsible for controlling the grid frequency of the Jeju Island Power System (JIPS). The grid voltage is regulated by using STATCOMs. However, these two objectives can be achieved in one device that is called by a modular multilevel converter-high voltage direct current (MMC-HVDC) system. Therefore, this paper proposes frequency and voltage control strategies for the JIPS based on a MMC-HVDC system. In this case, the ancillary frequency and voltage controllers are implemented into the MMC-HVDC system. The modelling of the JIPS is done based on the parameters and measured data from the real JIPS. The simulation results obtained from the PSCAD/EMTDC simulation program are confirmed by comparing them to measured data from the real JIPS. Then, the effect of the MMC-HVDC system on the JIPS will be tested in many cases of operation when the JIPS operates with and without STATCOMs. The objective is to demonstrate the effectiveness of the proposed control strategy.

Design of power and phase feedback control system for ion cyclotron resonance heating in the Experimental Advanced Superconducting Tokamak

  • L.N. Liu;W.M. Zheng;X.J. Zhang;H. Yang;S. Yuan;Y.Z. Mao;W. Zhang;G.H. Zhu;L. Wang;C.M. Qin;Y.P. Zhao;Y. Cheng;K. Zhang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.216-221
    • /
    • 2024
  • Ion cyclotron range of frequency (ICRF) heating system is an important auxiliary heating method in the experimental Advanced Superconducting Tokamak (EAST). In EAST, several megawatts of power are transmitted with coaxial transmission lines and coupled to the plasma. For the long pulse and high power operation of the ICRF waves heating system, it is very important to effectively control the power and initial phase of the ICRF signals. In this paper, a power and phase feedback control system is described based on field programmable gate array (FPGA) devices, which can realize complicated algorithms with the advantages of fast running and high reliability. The transmitted power and antenna phase are measured by a power and phase detector and digitized. The power and phase feedback control algorithms is designed to achieve the target power and antenna phase. The power feedback control system was tested on a dummy load and during plasma experiments. Test results confirm that the feedback control system can precisely control ICRF power and antenna phase and is robust during plasma variations.

A Study on Variable Speed Generation System with Energy Saving Function

  • Dugarjav, Bayasgalan;Lee, Sang-Ho;Han, Dong-Hwa;Lee, Young-Jin;Choe, Gyu-Ha
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.137-143
    • /
    • 2013
  • This paper presents development of variable speed generation (VSG) system with energy saving function. The rubber tyred gantry crane (RTGC) requires the power from diesel-engine. Significant fuel savings by reducing the engine speed can be achieved, because all of operation modes except hoisting are required lower power than rated value of engine. When low speed operation output voltage of generator is decrease until acceptable range of motor driver inverters and auxiliary load supplier. According to power demand engine speed is varying from 20 to 60Hz, and voltage is varying between 210Vac and 480Vac. When idle mode or low power operation dc/dc converter operates by constant output voltage control and inverters dc site voltage is compensated by it. This paper proposed 3-phase interleaved boost converter which has the same structure as the commercially available 3-phase inverter and current sharing capability. 400kW interleaved converter is designed and a performance of converter is evaluated through several experiments with a RTGC system. Energy saving VSG system can cut down fuel consumption by 36% and 21.3% at idle and unidirectional load operations.

Integrated Control Center on the drawing board for the Northeast Asia Region Interconnected Power System (동북아 연합급전소 구상)

  • Yoon, Kap-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.20-23
    • /
    • 2005
  • This paper introduces the latest discussions on the Integrated Dispatch Center (IDC, or Integrated Control Center: ICC) for the Northeast Asia Region Interconnected Power System (NEAR-IPS). The IDC is for the safety and economical operation of the NEAR-IPS. The status and plans of the EPSs and the control systems (or dispatch centers) to be interconnected shall be reviewed and the consideration on the IDC to be built in the future shall be discussed.

  • PDF

A cooperative control study of Jeju ±80kV 60MW HVDC for voltage stability enhancement (제주 ±80kV 60MW HVDC 협조 제어 방안 연구)

  • Yoon, Jong-Su;Seo, Bo-Hyeok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1221-1225
    • /
    • 2012
  • This paper describes CSC(Current Sourced Converters)-based HVDC operational strategy for voltage stability enhancement in the power system. In case of CSC-based HVDC system, rectifier and inverter consume reactive power up to about 60% of converter rating. Therefore, CSC-based HVDC is basically not useful system for voltage stability even if AC filters and shunt capacitors are attached. But, If the particular power system condition is fulfilled, CSC-based HVDC also can be the rapid reactive power source for voltage stability enhancement using a cooperative control with converter and AC filters/Shunt Capacitors. In this paper, the cooperative control algorithm is presented and simulated to ${\pm}80kV$ 60MW HVDC system in Jeju island.

AN APPLICATION OF INTERPOLATION TECHNIQUE WITH OPTIMUM PATTERN TO VOLTAGE - REACTIVE POWER CONTROL OF POWER SYSTEM (전력계통 전압 - 무효전력제어에의 최적 패턴을 이용한 내삽기법의 적용)

  • Park, Young-Moon;Lee, Jeong-Ho;Yoon, Man-Chul;Kwon, Tae-Won
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.214-217
    • /
    • 1992
  • This paper introduces a new methodology to apply the interpolation technique wi th optimum pattern to voltage-reactive power control of power system. The conventional tool for the optimal operation of power system is Optimal Power Flow(OPF) by standard optimization techniques. The achievement of solution through OPF programs has a defect of computation time, so that it is impossible to apply the OPF programs to the real-time control area. The proposed method presents a solution in a short period of time and an output with a good accuracy. The optimum pattern is a set of input-output pairs, where an input is a load level and a type of outage and an output is the result of OPF program corresponding to the input. The output in the OPF represents control variables of voltage-reactive power control. The interpolation technique is used to obtain the solution for an arbitrary input. As a result, the new technique helps operators in the process of the real-time voltage-reactive power control in both normal and emergency operating states.

  • PDF

FPGA based POS MPPT Control for a Small Scale Charging System of PV-nickel Metal Hydride Battery (FPGA를 이용한 소형 태양광 발전 니켈 수소 전지 충전 시스템의 POS MPPT 제어)

  • Lee, Hyo-Guen;Seo, Hyo-Ryong;Kim, Gyeong-Hun;Park, Min-Won;Yu, In-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.80-84
    • /
    • 2012
  • Recently, the small scale photovoltaic (PV) electronic devices are drawing attention as the upcoming PV generation system. The PV system is commonly used in small scale PV applications such as LED lighting and cell phone. This paper proposes photovoltaic output sensorless (POS) maximum power point tracking (MPPT) control for a small scale charging system of PV-nickel metal hydride battery using field-programmable gate array (FPGA) controller. A converter is connected to a small scale PV cell and battery, and performs the POS MPPT at the battery terminal current instead of being at the PV cell output voltage and current. The FPGA controller and converter operate based on POS MPPT method. The experimental results show that the nickel metal hydride battery is charged by the maximum PV output power.

Switch Open Fault Detection and Tolerant Operation Method for Three Phase PWM Rectifier (3상 PWM 정류기의 스위치 개방 고장 감지 및 허용운전 방법)

  • Shin, Hee-Keun;An, Byoung-Woong;Kim, Hag-Wone;Cho, Kwan-Yuhl;Jung, Shin-Myung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.266-273
    • /
    • 2012
  • In this paper, the new open fault detection and tolerant operation method for 3 phase PWM rectifier is proposed. When open fault occurred on the inverter switches of 3 Phase PWM rectifier, the DC link voltage ripple is increased because the input current of the faulty phase is distorted. In this case, the quality of electric power would decrease, and the life time of DC link capacitor is decreased. The open fault is detected by a simple MRAS(Model Reference Adaptive System) without additional hardware sensors, and the tolerant operation carried out by turning on the opposite switch of the faulty switch without any redundancy. By the proposed method, the faulty phase input current can be controlled, so that 3-phase input current is balanced relatively under the faulty condition and the voltage ripple of DC link output is reduced. The validity of the proposed technique is proved on the 6kW 3-phase PWM rectifier system by simulation and experiment.