• Title/Summary/Keyword: Power Semiconductor

Search Result 1,990, Processing Time 0.029 seconds

All-optical wavelength conversion of 2.5 Gb/s optical signals by four-wave mixing in a semiconductor optical amplifier (반도체 광 증폭기내에서의 4광파 혼합을 이용한 2.5Gb/s 광신호의 전광 파장변환)

  • 방준학;서완석;이성은
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.8
    • /
    • pp.69-75
    • /
    • 1998
  • We demonstrate wavelength conversion of 2.5Gb/s optical signals by four-wave mixing (FWM) in a semiconductor optical amplifier (SOA). We investigate the effect of input pump and signal powers on the coversion efficiency, optical signal-to-noise ratio (OSNR) and extinction ratio to be a measure of performance in a wavelength converter. As a result, we show that the maximum bit error rate (BER) performance can be obtained by co promising among high-vonversion efficiency (minimum Pprobe), high-OSNR (maximum Pprobe) and low-cross-gain saturation effects (Pprobe kept at least 6dB weaker than Ppump). In our experiment, we obtain optimum performance at +3 dBm pump power and -6dBm signal power. The power penalty incurred in the wavelength conversion can be minimized by careful selection of the input pump and signal powers. We show that about 0.5dB power penalty for 3.2nm wavelength coversion at 10-10 BER is achievable.

  • PDF

Performance Evaluation of GaN-Based Synchronous Boost Converter under Various Output Voltage, Load Current, and Switching Frequency Operations

  • Han, Di;Sarlioglu, Bulent
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1489-1498
    • /
    • 2015
  • Gallium nitride (GaN)-based power switching devices, such as high-electron-mobility transistors (HEMT), provide significant performance improvements in terms of faster switching speed, zero reverse recovery, and lower on-state resistance compared with conventional silicon (Si) metal-oxide-semiconductor field-effect transistors (MOSFET). These benefits of GaN HEMTs further lead to low loss, high switching frequency, and high power density converters. Through simulation and experimentation, this research thoroughly contributes to the understanding of performance characterization including the efficiency, loss distribution, and thermal behavior of a 160-W GaN-based synchronous boost converter under various output voltage, load current, and switching frequency operations, as compared with the state-of-the-art Si technology. Original suggestions on design considerations to optimize the GaN converter performance are also provided.

DESIRABLE PARAMETER IDENTIFICATION FOR THE IMPLEMENTATION OF IDEAL PASSIVE FAULT CURRENT LIMITER FOR THE PROTECTION OF POWER SEMICONDUCTOR DEVICES

  • Mukhopadhyay, S.C.;Iwahara, M.;Yamada, S.;Dawson, F.P.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.859-864
    • /
    • 1998
  • Compact and small size, reliable and failsafe operation and low cost featuring fault current limiter causing the designer to take a close look into the use of passive fault current limiter(FCL) for the protection of power semiconductor devices in power electronic systems. This paper has identified the main parameters responsible for the development of ideal passive magnetic current limiter. The effect of those parameters on the range of operation and the voltage-current characteristics of the magnetic current limiter has been studied using tableau approach. Desirable characteristics are discussed and the simulation results are presented.

  • PDF

Load-Adaptive Address Energy Recovery Technique for Plasma Display Panel

  • Lee Jun-Yeong
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.05a
    • /
    • pp.192-200
    • /
    • 2005
  • A high speed address recovery technique for AC plasma display panel(PDP) is proposed. By removing the GND switching operation, the recovery speed can be increased and switching loss due to GND switch also becomes to be reduced. The proposed method is able to perform load-adaptive operation by controlling the voltage level of energy recovery capacitor, which prevents increasing inefficient power consumption caused by circuit loss during recovery operation. Thus, th e technique shows the minimum address power consumption according to various displayed images, different from prior methods operating in fixed mode regardless of images. Test results with 50' HD single- scan PDP(resolution : $1366{\times}768$) show that less than 350ns of recovery time is successfully accomplished and about $54\%$ of the maximum power consumption can be reduced, tracing minimum power consumption curves.

  • PDF

Design and Fabrication of a Receiver Module for 5.8GHz Microwave Wireless Power Transmission (5.8GHz 마이크로파 무선전력전송을 위한 수신기 모듈 설계 및 구현)

  • Lee, Seong Hun;Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.16-21
    • /
    • 2016
  • In this paper, we have designed and fabricated a receiver module for 5.8GHz Microwave Wireless Power Transmission. The receiver module was composed of an antenna, BPF (Band Pass Filter) and RF-DC converter. The antenna was designed to RHCP (Right Hand Circular Polarization). And we used ${\lambda}g/2$ open-circuited stubs for the BPF. In addition, the RF-DC converter used the tripler voltage circuit for voltage multipliers. The integrated receiver RF module for 5.8GHz Microwave Wireless Power Transmission has been designed and fabricated. The voltage was measured to the distance of 50cm.

Improvement of Temperature Characteristics in Ceramic-packaged Shunt Resistors (세라믹 패키지를 이용한 shunt 저항의 온도 특성 개선)

  • Kang, Doo-Won;Jo, Jungyol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.57-60
    • /
    • 2015
  • Electric power in large devices is controlled by digital circuits, such as switching mode power supply. This kind of power circuits require accurate current sensor for power distribution. We studied characteristics of shunt resistor, which has many advantages for commercial application compared to Hall-effect current sensor. We applied ceramic package to the shunt resistor. Ceramic package has good thermal conductivity compared to plastic package, and this point is important for space requirement in Printed Circuit Board (PCB). Another advantage of the ceramic package is that surface mount technology (SMT) can be used for production. Our experimental results showed that the ceramic packaged resistor showed about 50% lower temperature than the plastic packaged one. Burning point and frequency characteristics are also discussed.

Design and Fabrication of a BPF for 5.8 GHz Microwave Wireless Power Transmission (5.8 GHz 마이크로파 무선전력전송을 위한 BPF의 설계 및 구현)

  • Lee, Seong Hun;Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.88-91
    • /
    • 2015
  • In this paper, we have designed and fabricated a BPF (Band Pass Filter) for 5.8GHz Microwave Wireless Power Transmission. We $used{\lambda}g/2$ open-circuited stubs in addition to T-shaped transmission lines for the BPF. This BPF removes harmonics caused by diodes of RF-DC converter, and thus the RF-DC converter converts more RF power to the DC. The performance of the BPF was measured and shown through direct comparison of voltages converted by the doubler as a RF-DC Converter with and without the BPF.

Design and Fabrication of RF-DC Converters for 5.8 GHz Microwave Wireless Power Transmission (5.8 GHz 마이크로파 무선전력전송을 위한 RF-DC 변환기의 설계 및 구현)

  • Lee, Seong Hun;Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.84-87
    • /
    • 2015
  • We have designed and fabricated two different RF-DC Converters called doubler for 5.8GHz Microwave Wireless Power Transmission. The doubler as RF-DC Converter makes the rectified voltage be doubled. We measured and compared voltages of the doublers with those of the previous full-wave rectifying RF-DC Converter. The doublers show rectified double voltages. However, the full-wave rectifying converter has a high efficiency due to the suppression of reflecting harmonics. The other fabricated doublers causes so many harmonics that they can't convert the low-power RF to the full DC. In this paper, we show that the different doublers doesn't double the rectifying voltages compared with those of the full-wave rectifying converter and give a reason about that.

Blue Laser Generated by Sum Frequency (합주파에 의한 청색레이저 발생)

  • Lee Young-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.224-227
    • /
    • 2006
  • We have chained 459nm blue laser radiation generated by intracavity sum frequency generation( SFG ) due to the mixing of the 1064 nm laser output of a Nd:YVO4 pumped by diode and the 809nm radiation from higg-power semiconductor laser(500mW). The maximum blue output power of 0.95 mW was obtained using 400 mW input power of semiconductor laser at the type II phase matching condition (${\psi}=90^{\circ}\;{\theta}=90^{\circ}$). The threshold input power of blue laser generation was 120 mW.

A study on the Efficiency characteristics of the CRM PFC using GaN FET (GaN FET를 적용한 CRM PFC의 효율특성에 관한 연구)

  • Gil, Young-Man;Choi, Hyun-Su;Jin, Gi-Seok;Ahn, Tae-Young;Jang, Jin-Haeng
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.89-90
    • /
    • 2014
  • Recently, one of the switching rectifiers, Power Factor Correction Circuit is often applied in rectification stage to get high efficient conversion of AC-DC SMPS However, it becomes important to select optimal semiconductor switch as well as to design optimal rectifier for achieving higher power conversion. We performed experiments with MOSFET, SiC and GaN FET that are widely used in 600 W Interleaved CRM PFC and include the data in this report. The results are presented for discrete semiconductor and integrated implementations of interleaved CRM PFC.

  • PDF