• Title/Summary/Keyword: Power Scheduling

Search Result 545, Processing Time 0.023 seconds

Generation Scheduling with Large-Scale Wind Farms using Grey Wolf Optimization

  • Saravanan, R.;Subramanian, S.;Dharmalingam, V.;Ganesan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1348-1356
    • /
    • 2017
  • Integration of wind generators with the conventional power plants will raise operational challenges to the electric power utilities due to the uncertainty of wind availability. Thus, the Generation Scheduling (GS) among the online generating units has become crucial. This process can be formulated mathematically as an optimization problem. The GS problem of wind integrated power system is inherently complex because the formulation involves non-linear operational characteristics of generating units, system and operational constraints. As the robust tool is viable to address the chosen problem, the modern bio-inspired algorithm namely, Grey Wolf Optimization (GWO) algorithm is chosen as the main optimization tool. The intended algorithm is implemented on the standard test systems and the attained numerical results are compared with the earlier reports. The comparison clearly indicates the intended tool is robust and a promising alternative for solving GS problems.

Stability Improvement of Distributed Power Generation Systems with an LCL-Filter Using Gain Scheduling Based on Grid Impedance Estimations

  • Choi, Dae-Keun;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.599-605
    • /
    • 2011
  • This paper proposes a gain scheduling method that improves the stability of grid-connected systems employing an LCL-filter. The method adjusts the current controller gain through an estimation of the grid impedance in order to reduce the resonance that occurs when using an LCL-filter to reduce switching harmonics. An LCL-filter typically has a frequency spectrum with a resonance peak. A change of the grid-impedance results in a change to the resonant frequency. Therefore an LCL-filter needs a damping method that is applicable when changing the grid impedance for stable system control. The proposed method instantaneously estimates the grid impedance and observes the resonant frequency at the same time. Consequently, the proposed method adjusts the current controller gain using a gain scheduling method in order to guarantee current controller stability when a change in the resonant frequency occurs. The effectiveness of the proposed method has been verified by simulations and experimental results.

A Study on Generator Maintenance Scheduling using Genetic Algo (유전알고리즘을 이용한 발전기 예방정비계획 수립에 관한 연구)

  • Park, Si-Woo;Song, Kyung-Bin;Nam, Jae-Hyun;Jeon, Dong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.781-783
    • /
    • 1997
  • Genetic Algorithm is a kind of an evolution programming based on natural evolution principle. It applied to probabilistic searching, machine learning and optimization, and many good results were reported. Generator maintenance scheduling is an optimization Problem with constraints. This paper applied a genetic algorithm to generator maintenance scheduling problem and tested on sample systems. The results are compared with heuristic method and branch-and-bound method.

  • PDF

Cross-Layer Resource Allocation in Multi-interface Multi-channel Wireless Multi-hop Networks

  • Feng, Wei;Feng, Suili;Zhang, Yongzhong;Xia, Xiaowei
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.960-967
    • /
    • 2014
  • In this paper, an analytical framework is proposed for the optimization of network performance through joint congestion control, channel allocation, rate allocation, power control, scheduling, and routing with the consideration of fairness in multi-channel wireless multihop networks. More specifically, the framework models the network by a generalized network utility maximization (NUM) problem under an elastic link data rate and power constraints. Using the dual decomposition technique, the NUM problem is decomposed into four subproblems - flow control; next-hop routing; rate allocation and scheduling; power control; and channel allocation - and finally solved by a low-complexity distributed method. Simulation results show that the proposed distributed algorithm significantly improves the network throughput and energy efficiency compared with previous algorithms.

A Study on Modeling of Users a Load Usage Pattern in Home Energy Management System Using a Copula Function and the Application (Copula 함수를 이용한 HEMS 내 전력소비자의 부하 사용패턴 모델링 및 그 적용에 관한 연구)

  • Shin, Je-Seok;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.16-22
    • /
    • 2016
  • This paper addresses the load usage scheduling in the HEMS for residential power consumers. The HEMS would lead the residential users to change their power usage, so as to minimize the cost in response to external information such as a time-varying electricity price, the outside temperature. However, there may be a consumer's inconvenience in the change of the power usage. In order to improve this, it is required to understand the pattern of load usage according to the external information. Therefore, this paper suggests a methodology to model the load usage pattern, which classifies home appliances according to external information affecting the load usage and models the usage pattern for each appliance based on a copula function representing the correlation between variables. The modeled pattern would be reflected as a constraint condition for an optimal load usage scheduling problem in HEMS. To explain an application of the methodology, a case study is performed on an electrical water heater (EWH) and an optimal load usage scheduling for EHW is performed based on the branch-and-bound method. From the case study, it is shown that the load usage pattern can contribute to an efficient power consumption.

An Approach to Optimal Dispatch Scheduling Incorporating Transmission Security Constraints

  • Chung, Koo-Hyung;Kang, Dong-Joo;Kim, Balho H.;Kim, Tai-Hoon;Oh, Tae-Kyoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.199-206
    • /
    • 2008
  • The introduction of competition in electricity markets emphasizes the importance of sufficient transmission capacities to guarantee effective power transactions. Therefore, for the economic and stable electric power system operation, transmission security constrains should be incorporated into the dispatch scheduling problem. With the intent to solve this problem, we decompose a dispatch scheduling problem into a master problem(MP) and several subproblems(SPs) using Benders decomposition. The MP solves a general optimal power flow(OPF) problem while the SPs inspect the feasibility of OPF solution under respective transmission line contingencies. If a dispatch scheduling solution given by the MP violates transmission security constraints, then additional constraints corresponding to the violations are imposed to the MP. Through this iterative process between the MP and SPs, we derive an optimal dispatch schedule incorporating the post-contingency corrective rescheduling. In addition, we consider interruptible loads as active control variables since the interruptible loads can participate as generators in competitive electricity markets. Numerical examples demonstrate the efficiency of the proposed algorithm.

Performance Evaluation of Job Scheduling Techniques Incorporating the Ondemand Governor Policy (온디맨드 거버너 정책에 따른 작업 스케줄링 기법의 성능 평가)

  • Tak, Sungwoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2213-2221
    • /
    • 2015
  • The ondemand governor used in android-based smartphone platforms is a CPU frequency scaling technique. The ondemand governor sets the CPU operating frequency depending on the CPU utilization rate. Job scheduling affects the CPU utilization rate. The power consumption is proportional to the value of operating frequency. Consequently, CPU frequency scaling and CPU utilization rate have an effect on power consumption in a smartphone. In this paper, we evaluated the performance of job scheduling techniques incorporating the ondemand governor in terms of CPU utilization, power consumption, and job deadline miss ratio.

Real-Time Scheduling for Periodic and Aperiodic Tasks on Automotive Electronic System (자동차 전장 시스템에서 주기 및 비주기 태스크를 위한 실시간 스케줄링)

  • Jo, Su-Yeon;Kim, Nam-Jin;Lee, Eun-Ryung;Kim, Jae-Young;Kim, Joo-Man
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.2
    • /
    • pp.55-61
    • /
    • 2011
  • We propose power-saving real-time scheduling method for mixed task sets which consist of both time-based periodic and event-based aperiodic tasks in the automotive operating system. In this system, we have to pursue maximization of power-saving using the slack time estimation and minimization of response time of aperiodic tasks simultaneously. However, since these two goals conflict each other, one has to make a compromise between them according to the given application domain. In this paper, we find the adjustment factor which gives better response time of aperiodic tasks with slight power consumption increase. The adjustment factor denotes the gravity of response time for aperiodic tasks. We apply the ccEDF scheduling for time-based periodic tasks and then calculate new utilization to be applied to the adjustment factor. In this paper, we suggest the lccEDF algorithm to make a tradeoff between the two goals by systematically adjusting the factor. Simulation results show that our approach is excellent for variety of task sets.

Optimal Voltage and Reactive Power Scheduling for Saving Electric Charges using Dynamic Programming with a Heuristic Search Approach

  • Jeong, Ki-Seok;Chung, Jong-Duk
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.329-337
    • /
    • 2016
  • With the increasing deployment of distributed generators in the distribution system, a very large search space is required when dynamic programming (DP) is applied for the optimized dispatch schedules of voltage and reactive power controllers such as on-load tap changers, distributed generators, and shunt capacitors. This study proposes a new optimal voltage and reactive power scheduling method based on dynamic programming with a heuristic searching space reduction approach to reduce the computational burden. This algorithm is designed to determine optimum dispatch schedules based on power system day-ahead scheduling, with new control objectives that consider the reduction of active power losses and maintain the receiving power factor. In this work, to reduce the computational burden, an advanced voltage sensitivity index (AVSI) is adopted to reduce the number of load-flow calculations by estimating bus voltages. Moreover, the accumulated switching operation number up to the current stage is applied prior to the load-flow calculation module. The computational burden can be greatly reduced by using dynamic programming. Case studies were conducted using the IEEE 30-bus test systems and the simulation results indicate that the proposed method is more effective in terms of saving electric charges and improving the voltage profile than loss minimization.

Stochastic Power-efficient DVFS Scheduling of Real-time Tasks on Multicore Processors with Leakage Power Awareness (멀티코어 프로세서의 누수 전력을 고려한 실시간 작업들의 확률적 저전력 DVFS 스케쥴링)

  • Lee, Kwanwoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.4
    • /
    • pp.25-33
    • /
    • 2014
  • This paper proposes a power-efficient scheduling scheme that stochastically minimizes the power consumption of real-time tasks while meeting their deadlines on multicore processors. In the proposed scheme, uncertain computation amounts of given tasks are translated into probabilistic computation amounts based on their past completion amounts, and the mean power consumption of the translated probabilistic computation amounts is minimized with a finite set of discrete clock frequencies. Also, when system load is low, the proposed scheme activates a part of all available cores with unused cores powered off, considering the leakage power consumption of cores. Evaluation shows that the scheme saves up to 69% power consumption of the previous method.