• Title/Summary/Keyword: Power Scheduling

Search Result 545, Processing Time 0.023 seconds

RPSMDSM: Residential Power Scheduling and Modelling for Demand Side Management

  • Ahmed, Sheeraz;Raza, Ali;Shafique, Shahryar;Ahmad, Mukhtar;Khan, Muhammad Yousaf Ali;Nawaz, Asif;Tariq, Rohi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2398-2421
    • /
    • 2020
  • In third world countries like Pakistan, the production of electricity has been quickly reduced in past years due to rely on the fossil fuel. According to a survey conducted in 2017, the overall electrical energy capacity was 22,797MW, since the electrical grids have gone too old, therefore the efficiency of grids, goes down to nearly 17000MW. Significant addition of fossil fuel, hydro and nuclear is 64.2%, 29% and 5.8% respectively in the total electricity production in Pakistan. In 2018, the demand crossed 20,223MW, compared to peak generation of 15,400 to 15,700MW as by the Ministry of Water and Power. Country faces a deficit of almost 4000MW to 5000MW for the duration of 2019 hot summer term. Focus on one aspect considering Demand Side Management (DSM) cannot oversea the reduction of gap between power demand and customer supply, which eventually leads to the issue of load shedding. Hence, a scheduling scheme is proposed in this paper called RPSMDSM that is based on selection of those appliances that need to be only Turned-On, on priority during peak hours consuming minimum energy. The Home Energy Management (HEM) system is integrated between consumer and utility and bidirectional flow is presented in the scheme. During peak hours of electricity, the RPSMDSM is capable to persuade less power consumption and accomplish productivity in load management. Simulations show that RPSMDSM scheme helps in scheduling the electricity loads from peak price to off-peak price hours. As a result, minimization in electricity cost as well as (Peak-to-Average Ratio) PAR are accomplished with sensible waiting time.

Low Power Real-Time Scheduling for Tasks with Nonpreemptive Sections (비선점 구간을 갖는 태스크들을 위한 저전력 실시간 스케줄링)

  • Kim, Nam-Jin;Kim, In-Guk
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.1
    • /
    • pp.103-113
    • /
    • 2010
  • The basic real-time scheduling algorithms based on RM or EDF approaches assume that the tasks are preemptive, but the tasks may contain nonpreemptive sections in many cases. Also the existing scheduling algorithm for reducing the power consumption of the processor is based on the task utilizations and determines the processor speed $S_H$ or $S_L$ according to the existence of the blocking intervals. In this algorithm, the $S_H$ interval that operates in high speed is the interval during which the priority inversion by blocking occurs, and the length of this interval is set to the task deadline that includes the blocking intervals. In this paper, we propose an improved algorithm that can reduce the power consumption ratio by shortening the length of the $S_H$ interval. The simulation shows that the power consumption ratio of the proposed algorithm is reduced as much as 13% compared to the existing one.

A Threshold-Based Distributed User Scheduling with Transmit Power Control for Uplink Multi-Cell Networks (다중 셀 상향링크 네트워크에서 송신전력제어를 이용한 임계값 기반 분산 사용자 스케쥴링)

  • Cho, Moon-Je;Ban, Tae-Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2607-2612
    • /
    • 2014
  • In this paper, we propose a distributed user scheduling with transmit power control based on the amount of interference inflicted to other BSs in multi-cell uplink networks. Assuming that the channel reciprocity time-division duplexing(TDD) system is used, the channel state information (CSI) can be obtained at each user from pilot signals from other BSs. The amount of generating interference to other BSs will be calculated at each user. Especially, in this paper, we propose the threshold-based transmit power control, in which a user decrease its transmit power if its generating interference to other BSs is larger than a predetermined threshold. Simulation results show that the proposed technique significantly outperforms the existing user scheduling algorithms.

IEEE 802.15.4e TSCH-mode Scheduling in Wireless Communication Networks

  • Ines Hosni;Ourida Ben boubaker
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.156-165
    • /
    • 2023
  • IEEE 802.15.4e-TSCH is recognized as a wireless industrial sensor network standard used in IoT systems. To ensure both power savings and reliable communications, the TSCH standard uses techniques including channel hopping and bandwidth reserve. In TSCH mode, scheduling is crucial because it allows sensor nodes to select when data should be delivered or received. Because a wide range of applications may necessitate energy economy and transmission dependability, we present a distributed approach that uses a cluster tree topology to forecast scheduling requirements for the following slotframe, concentrating on the Poisson model. The proposed Optimized Minimal Scheduling Function (OMSF) is interested in the details of the scheduling time intervals, something that was not supported by the Minimal Scheduling Function (MSF) proposed by the 6TSCH group. Our contribution helps to deduce the number of cells needed in the following slotframe by reducing the number of negotiation operations between the pairs of nodes in each cluster to settle on a schedule. As a result, the cluster tree network's error rate, traffic load, latency, and queue size have all decreased.

Multi-user Diversity Scheduling Methods Using Superposition Coding Multiplexing (중첩 코딩 다중화를 이용한 다중 사용자 다이버시티 스케줄링 방법)

  • Lee, Min;Oh, Seong-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.332-340
    • /
    • 2010
  • In this paper, we deal with multi-user diversity scheduling methods that transmit simultaneously signals from multiple users using superposition coding multiplexing. These methods can make various scheduling methods be obtained, according to strategies for user selection priority from the first user to the first-following users, strategies for per-user power allocation, and resulting combining strategies. For the first user selection, we consider three strategies such as 1) higher priority for a user with a better channel state, 2) following the proportional fair scheduling (PFS) priority, 3) higher priority for a user with a lower average serving rate. For selection of the first-following users, we consider the identical strategies for the first user selection. However, in the second strategy, we can decide user priorities according to the original PFS ordering, or only once an additional user for power allocation according to the PFS criterion by considering a residual power and inter-user interference. In the strategies for power allocation, we consider two strategies as follows. In the first strategy, it allocates a power to provide a permissible per-user maximum rate. In the second strategy, it allocates a power to provide a required per-user minimum rate, and then it reallocates the residual power to respective users with a rate greater than the required minimum and less than the permissible maximum. We consider three directions for scheduling such as maximizing the sum rate, maximizing the fairness, and maximizing the sum rate while maintaining the PFS fairness. We select the max CIR, max-min fair, and PF scheduling methods as their corresponding reference methods [1 and references therein], and then we choose candidate scheduling methods which performances are similar to or better than those of the corresponding reference methods in terms of the sum rate or the fairness while being better than their corresponding performances in terms of the alternative metric (fairness or sum rate). Through computer simulations, we evaluate the sum rate and Jain’s fairness index (JFI) performances of various scheduling methods according to the number of users.

A Slot Scheduling Algorithm for Balancing Power Consumption in Tree-based Sensor Networks (트리 기반 센서네트워크에서 전력 소모 균형을 위한 슬랏 스케쥴링 알고리즘)

  • Kim, Je-Wook;Oh, Roon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5A
    • /
    • pp.502-510
    • /
    • 2011
  • In this paper, we propose a slot scheduling algorithm for balancing power consumption in tree-based sensor networks. In this type of networks, nodes with lower depths tend to consume more energy than those with higher depths, thereby reducing the life time of the network. The proposed algorithm allocates a series of receiving slots first and then a series of sending slots. This way of slot allocation eases packet aggregation and filtering, and thus reduces traffic load on nodes near a sink. We compare the proposed algorithm and the frame-slot allocation algorithm employed in the TreeMAC by resorting to simulation. The simulation results showed that the proposed approach well achieves the balancing of power consumption.

Design of Tower Damper Gain Scheduling Algorithm for Wind Turbine Tower Load Reduction (풍력터빈 타워 하중 저감을 위한 타워 댐퍼 게인 스케줄링 알고리즘 설계)

  • Kim, Cheol-Jim;Kim, Kwan-Su;Paek, In-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.2
    • /
    • pp.1-13
    • /
    • 2018
  • This paper deals with the NREL (National Renewable Energy Laboratory) 5-MW reference wind turbine. The controller which include MPPT (Maximum power point tracking) control algorithm and tower load reduction control algorithm was designed by MATLAB Simulink. This paper propose a tower damper algorithm to improve the existing tower damper algorithm. To improve the existing tower damper algorithm, proposed tower damper algorithm were applied the thrust sensitivity scheduling and PI control method. The thrust sensitivity scheduling was calculated by thrust force formula which include thrust coefficient table. Power and Tower root moment DEL (Damage Equivalent Load) was set as a performance index to verify the load reduction algorithm. The simulation were performed 600 seconds under the wind conditions of the NTM (Normal Turbulence Model), TI (Turbulence Intensity)16% and 12~25m/s average wind speed. The effect of the proposed tower damper algorithm is confirmed through PSD (Power Spectral Density). The proposed tower damper algorithm reduces the fore-aft moment DEL of the tower up to 6% than the existing tower damper algorithm.

A Study of Job Shop Scheduling for Minimizing Tardiness with Alternative Machines (대체기계가 존재하는 Job Shop 일정계획 환경에서 납기지연을 최소화하는 방법에 관한 연구)

  • Kim, Ki-Dong;Kim, Jae-Hong
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.51-61
    • /
    • 2008
  • In these days, domestic manufacturers are faced with managerial difficulties such as the increasing competition in their industry and the increasing power of customers. In this situation, they have to satisfy their customers with high quality of their products and meeting due date of their orders. Production of the order within due date is an important factor for improving enterprise competitiveness. The causes of occurrence of tardiness may be wrong product scheduling, unexpected events in field and so on, a way to minimize tardiness is use of alternative machines, overwork, outsourcing and etc.. In this study, we deal with a scheduling problem that can minimize tardiness using alternative machines. This paper provides a mathematical program and a heuristic method for job shop scheduling for minimizing tardiness with alternative machines. And a proposed heuristic method is verified comparing with optimal solution obtained by ILOG CPLEX.

  • PDF

A Study on Heat-Treatment Process Scheduling for Heavy Forged Products using MIP (열처리 공정의 생산스케줄 수립과 적용에 관한 연구)

  • Choi, Min-Cheol
    • Korean Management Science Review
    • /
    • v.29 no.2
    • /
    • pp.143-155
    • /
    • 2012
  • The purpose of this study is to formulate and solve the scheduling problem to heat-treatment process in forging process and apply it to industries. Heat-treatment is a common process in manufacturing heavy forged products in ship engines and wind power generators. Total complete time of the schedule depends on how to group parts and assign them into heat furnace. Efficient operation of heat-treatment process increases the productivity of whole production system while scheduling the parts into heat-treatment furnace is a combinatorial problem which is known as an NP-hard problem. So the scheduling, on manufacturing site, relies on engineers' experience. To improve heat-treatment process schedule, this study formulated it into an MIP mathematical model which minimizes total complete time. Three methods were applied to example problems and the results were compared to each other. In case of small problems, optimal solutions were easily found. In case of big problems, feasible solutions were found and that feasible solutions were very close to lower bound of the solutions. ILOG OPL Studio 5.5 was used in this study.

Bidding Strategically for Scheduling in Grid Systems

  • Naddaf, Babak;Habibi, Jafar
    • Journal of Information Processing Systems
    • /
    • v.5 no.2
    • /
    • pp.87-96
    • /
    • 2009
  • Grid computing is a new technology which involves efforts to create a huge source of processing power by connecting computational resources throughout the world. The key issue of such environments is their resource allocation and the appropriate job scheduling strategy. Several approaches to scheduling in these environments have been proposed to date. Market driven scheduling as a decentralized solution for such complicated environments has introduced new challenges. In this paper the bidding problem with regard to resources in the reverse auction resource allocation model has been investigated and the new bidding strategies have been proposed and investigated.