• Title/Summary/Keyword: Power Plane

Search Result 944, Processing Time 0.022 seconds

Power Flow Analysis of Vibration of Coupled Plates Excited by a Point Force In an Arbitrary Direction (임의의 방향 점가진력에 의한 연성 평판 진동의 파워흐름해석)

  • 최재성;길현권;홍석윤
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.181-192
    • /
    • 2001
  • The power flow analysis (PFA) has been performed to analyze the vibration of coupled plates excited by a point force in an arbitrary direction. The point force generates the out-of-plane vibration associated wish flexural waves and the in-plane vibration associated with longitudinal and shear waves. The energy governing equation for each type of waves was introduced and solved to Predict the vibrational energy density and intensity generated by the out-of-plane and in-plane components of the point force in an arbitrary direction. The wave transmission approach was used to consider the mode conversion at the joint of the coupled plates. Numerical results for vibrational energy density and intensity on the coupled plates were presented. Comparison of the results by PFA with exact results showed that PFA can be an effective tool to predict the spatial variation of the vibrational energy and intensity on the coupled plates at high frequencies.

  • PDF

Design Equations for the H-plane Power Divider with a Circular Post in a Rectangular Waveguide

  • Han Sang-Sin;Lee Sun-Young;Ko Han-Woong;Park Dong-Hee;Ahn Bierng-Chearl
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.4
    • /
    • pp.150-155
    • /
    • 2004
  • Universal design equations are presented for the H-plane T-junction power divider with a circular conducting post in a rectangular waveguide. For a given operating frequency and power split ratio, the post offset from the T-junction center line, the distance between the post and the waveguide wall, and the post diameter can be adjusted to obtain a minimum reflection at the input waveguide. Optimum values of the post offset are given in terms of the normalized frequency and the power split ratio. Corresponding values of the post diameter and the distance of the post from the waveguide wall are given in terms of the normalized frequency and the post offset.

Modeling of Arbitrary Shaped Power Distribution Network for High Speed Digital Systems

  • Park, Seong-Geun;Kim, Jiseong;Yook, Jong-Gwan;Park, Han-Kyu
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.324-327
    • /
    • 2002
  • For the characterization of arbitrary shaped printed circuit board, lossy transmission line grid model based on SPICE netlist and analytical plane model based on the segmentation method are proposed in this paper. Two methods are compared with an arbitrary shaped power/ground plane. Furthermore, design considerations for the complete power distribution network structure are discussed to ensure the maximum value of the PDN impedance is low enough across the desired frequency range and to guide decoupling capacitor selection.

  • PDF

Modeling of an On-Chip Power/Ground Meshed Plane Using Frequency Dependent Parameters

  • Hwang, Chul-Soon;Kim, Ki-Yeong;Pak, Jun-So;Kim, Joung-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.192-200
    • /
    • 2011
  • This paper proposes a new modeling method for estimating the impedance of an on-chip power/ground meshed plane. Frequency dependent R, L, and C parameters are extracted based on the proposed method so that the model can be applied from DC to high frequencies. The meshed plane model is composed of two parts: coplanar multi strip (CMS) and conductor-backed CMS. The conformal mapping technique and the scaled conductivity concept are used for accurate modeling of the CMS. The developed microstrip approach is applied to model the conductor-backed CMS. The proposed modeling method has been successfully verified by comparing the impedance of RLC circuit based on extracted parameters and the simulated impedance using a 3D-field solver.

An Accurate Modeling Approach to Compute Noise Transfer Gain in Complex Low Power Plane Geometries of Power Converters

  • Nguyen, Tung Ngoc;Blanchette, Handy Fortin;Wang, Ruxi
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.411-421
    • /
    • 2017
  • An approach based on a 2D lumped model is presented to quantify the voltage transfer gain (VTG) in power converter low power planes. The advantage of the modeling approach is the ease with which typical noise reduction devices such as decoupling capacitors or ferrite beads can be integrated into the model. This feature is enforced by a new modular approach based on effective matrix partitioning, which is presented in the paper. This partitioning is used to decouple power plane equations from external device impedance, which avoids the need for rewriting of a whole set of equation at every change. The model is quickly solved in the frequency domain, which is well suited for an automated layout optimization algorithm. Using frequency domain modeling also allows the integration of frequency-dependent devices such inductors and capacitors, which are required for realistic computation results. In order to check the precision of the modeling approach, VTGs for several layout configurations are computed and compared with experimental measurements based on scattering parameters.

Underwater E-plane Attenuation Model of Omnidirectional Antenna Using Half Power Beam Width (HPBW) (반전력빔폭을 이용한 전방향성 안테나의 수중 환경 수직 평면 감쇠 모델)

  • Kwak, Kyungmin;Park, Daegil;Kim, Younghyeon;Chung, Wan Kyun;Kim, Jinhyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1050-1056
    • /
    • 2015
  • In this paper, we use the characteristics of electromagnetic waves underwater attenuation for estimating linear distance between a transmitting node and receiving node, and research underwater vertical plane attenuation model for constructing the underwater localization system. The underwater localization of 2 dimensional with the plane attenuation model in the horizontal plane (H-plane) was proposed previous research. But for the 3 dimensional underwater localization, the additional vertical plane (E-plane) model should be considered. Because the horizontal plane of omnidirectional antenna has the same attenuation tendency in x-y plane according to the distance, whereas in vertical plane shows an irregular pattern in x-z plane. For that reason, in the vertical plane environment, the attenuation should be changed by the position and inclination. Hence, in this paper the distance and angle between transmitting and receiving node are defined using spherical coordinate system and derive an antenna gain pattern using half power beam width (HPBW). The HPBW is called a term which defines antenna's performance between isotropic and other antennas. This paper derives omnidirectional antenna's maximum gain and attenuation pattern model and define vertical plane's gain pattern model using HPBW. Finally, experimental verifications for the proposed underwater vertical plane's attenuation model was executed.

A study on the identification of the causes according to the broken plane types of glass (유리 파단면의 형태 식별에 따른 파손원인 감정에 대한 연구)

  • Mun, Yong-Su;Sa, Sang-Yeol;Choe, Min-Seok;Choe, Jae-Ho;Kim, Yong-Su
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.3 no.1
    • /
    • pp.12-15
    • /
    • 2003
  • The purpose of this study is to distinguish the causes of broken glass from doors or windows when it is found being originally kept among the remains on the floor in fire site - whether it was broken due to heating or by outer power through test and the properties of the broken plane including the pattern on the plane. Addition to it, the study tries to find characteristics for judging the point and direction of breakdown through the analysis of glass broken by outer power. With two causes assumed - a. breakdown due to heating and b. breakdown due to outer power - 3 pieces of glass plates $(30cm{\times}30cm{\times}5mm)$ for each case were tested, getting the results as following: 1. For the glass broken due to the change of temperature The broken plane is of slow curve and smooth without any pattern. 2. For the broken due to outer power With the impact point as the center, the shows breakdown of radial type and the side shows breakdown of near-perpendicular type. The far the broken piece is from the impact point, the bigger the size is. The broken piece at the impact point is of long triangle type and the two long planes of the triangle shows semi-arc with the center of breakdown point and the other plane shows opposite pattern 3. Change of the pattern and type of the glass due to outer power The pattern and type of the glass due to outer power shows change due to heatihg.

  • PDF

Improvement of the Light Emission Efficiency on Nonpolar a-plane GaN LEDs with SiO2 Current Blocking Layer (무분극 a-plane 질화물계 발광다이오드에서 SiO2 전류 제한 층을 통한 발광 효율 증가)

  • Hwang, Seong Joo;Kwak, Joon Seop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.175-179
    • /
    • 2017
  • In this study, we investigate the $SiO_2$ current blocking layer (CBL) to improve light output power efficiency in nonpolar a-plane (11-20) GaN LEDs on a r-plane sapphire substrate. The $SiO_2$ CBL was produced under the p-pad layer using plasma enhanced chemical vapor deposition (PECVD). The results show that nonpolar GaN LED light output power with the $SiO_2$ CBL is considerably enhanced compared without the $SiO_2$ CBL. This can be attributed to reduced light absorption at the p-pad due to current blocking to the active layer by the $SiO_2$ CBL.

Coordinated Control Strategy for Power Systems with Wind Farms Integration Based on Phase-plane Trajectory

  • Zeng, Yuan;Yang, Yang;Qin, Chao;Chang, Jiangtao;Zhang, Jian;Tu, Jingzhe
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.20-29
    • /
    • 2018
  • The dynamic characteristics of power systems become more and more complex because of the integration of large-scale wind power, which needs appropriate control strategy to guarantee stable operation. With wide area measurement system(WAMS) creating conditions for realizing realt-ime transient stability analysis, a new coordinated control strategy for power system transient stability control based on phase-plane trajectory was proposed. When the outputs of the wind farms change, the proposed control method is capable of selecting optimal generators to balance the deviation of wind power and prevent transient instability. With small disturbance on the base operating point, the coordinated sensitivity of each synchronous generator is obtained. Then the priority matrix can be formed by sorting the coordinated sensitivity in ascending order. Based on the real-time output change of wind farm, coordinated generators can be selected to accomplish the coordinated control with wind farms. The results in New England 10-genrator 39-bus system validate the effectiveness and superiority of the proposed coordinated control strategy.

Omnidirectional Resonator in X-Y Plane Using a Crisscross Structure for Wireless Power Transfer

  • Kim, Donggeon;Seo, Chulhun
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.194-198
    • /
    • 2015
  • Magnetic resonant coupling is more efficient than inductive coupling for transferring power wirelessly over a distance. However, a conventional resonant wireless power transfer (WPT) system requires a transmitter and receiver pair in exactly coaxial positions. We propose a resonator that can serve as an omnidirectional WPT system. A magnetic field will be generated by the current flowed through the transmitter. This magnetic field radiates omnidirectionally in the x-y plane because of the crisscross structure characteristic of the transmitter. The proposed resonator is demonstrated by using a single port. To check the received S21 and transfer efficiency, we moved the receiver around the transmitter at different distances (50-350 mm). As a result, the transmission efficiency is found to be 48%-54% at 200 mm.