DOI QR코드

DOI QR Code

Improvement of the Light Emission Efficiency on Nonpolar a-plane GaN LEDs with SiO2 Current Blocking Layer

무분극 a-plane 질화물계 발광다이오드에서 SiO2 전류 제한 층을 통한 발광 효율 증가

  • Hwang, Seong Joo (Department of Printed Electronics Engineering, Sunchon National University) ;
  • Kwak, Joon Seop (Department of Printed Electronics Engineering, Sunchon National University)
  • 황성주 (순천대학교 인쇄전자공학과) ;
  • 곽준섭 (순천대학교 인쇄전자공학과)
  • Received : 2016.12.23
  • Accepted : 2017.01.26
  • Published : 2017.03.01

Abstract

In this study, we investigate the $SiO_2$ current blocking layer (CBL) to improve light output power efficiency in nonpolar a-plane (11-20) GaN LEDs on a r-plane sapphire substrate. The $SiO_2$ CBL was produced under the p-pad layer using plasma enhanced chemical vapor deposition (PECVD). The results show that nonpolar GaN LED light output power with the $SiO_2$ CBL is considerably enhanced compared without the $SiO_2$ CBL. This can be attributed to reduced light absorption at the p-pad due to current blocking to the active layer by the $SiO_2$ CBL.

Keywords

References

  1. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, Nature, 406, 865 (2000). [DOI: https://doi.org/10.1038/35022529]
  2. S. M. Hwang, Y. G. Seo, K. H. Baik, I. S. Cho, J. H. Baek, S. Jung, T. G. Kim, and M. Cho, Appl. Phys. Lett., 95, 071101 (2009). [DOI: https://doi.org/10.1063/1.3206666]
  3. C. Chen, V. Adivarahan, J. Yang, M. Shatalov, E. Kuokstis, and M. Asif Khan, Jpn. J. Appl. Phys., 42, L1039 (2003). [DOI: https://doi.org/10.1143/JJAP.42. L1039]
  4. Y. G. Seo, K. H. Baik, K. M. Song, S. Lee, H. Yoon, J. H. Park, K. Oh, and S. M. Hwang, Curr. Appl. Phys., 10, 1407 (2010). [DOI: https://doi.org/10.1016/j.cap.2010.05.003]
  5. H. Masui, S. Nakamura, S. P. DenBaars, and U. K. Mishra, IEEE Trans. Electron. Dev., 57, 8 (2010). [DOI: https://doi.org/10.1109/TED.2009.2033773]
  6. E. Sari, S. Nizamoglu, J. H. Choi, S. J. Lee, K. H. Baik, I. H. Lee, J. H. Baek, S. M. Hwang, and H. V. Demir, Opt. Exp., 19, 5442 (2011). [DOI: https://doi.org/10.1364/OE.19.005442]
  7. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, Semicond. Sci. Technol., 27, 024001 (2012). [DOI: https://doi.org/10.1088/0268-1242/27/2/024001]
  8. H. Kim, S. N. Lee, Y. Park, J. S. Kwak, and T. Y. Seong, Appl. Phys. Lett., 93, 032105 (2008). [DOI: https://doi.org/10.1063/1.2963492]
  9. M. J. Park, S. J. Hwang, H. J. Kim, S. Jung, K. H. Bang, H. G. Kim, Y. Chang, Y. Choi, and J. S. Kwak, J. Disp. Technol., 9, 346 (2013). [DOI: https://doi.org/10.1109/JDT.2012.2225597]
  10. M. J. Park, S. K. Oh, T. Jeong, S. Jung, and J. S. Kwak, J. Vac. Sci. Technol. B, 34, 04J111 (2016). https://doi.org/10.1116/1.4958720
  11. P. S. Hsu, T. H. Matthew, F. Wu, S. P. Denbaars, and J. S. Speck, Appl. Phys. Lett., 100, 021104 (2012). [DOI: https://doi.org/10.1063/1.3675850]
  12. C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, J. Appl. Phys., 92, 2248 (2002). [DOI: https://doi.org/10.1063/1.1497467]
  13. Y. B. Lee, R. Takaki, H. Sato, Y. Naoi, and S. Sakai, Phys. Stat. Sol., 200, 87 (2003). [DOI: https://doi.org/10.1002/pssa.200303253]
  14. H. C. Wang, Y. K. Su, C. L. Lin, W. B. Chen, and S. M. Chen, Jpn. J. Appl. Phys., 43, 2006 (2004). [DOI: https://doi.org/10.1143/JJAP.43.2006]
  15. K. H. Baik, Y. G. Seo, S. K. Hong, S. Lee, J. Kim, J. S. Son, and S. M. Hwang, IEEE Photonics Technol. Lett., 22, 595 (2010). [DOI: https://doi.org/10.1109/LPT.2010.2042950]
  16. H. Masui, S. Nakamura, S. P. DenBaars, and U. K. Mishra, IEEE Trans. Electron. Dev., 57, 88 (2010). [DOI: https://doi.org/10.1109/TED.2009.2033773]