• Title/Summary/Keyword: Power Mode

Search Result 4,689, Processing Time 0.033 seconds

Dynamic Response of a 2.75MW Wind Turbine Applying Torque Control Method Based on Torque-Mode (토크모드 기반의 토크 제어 방법을 적용한 2.75MW 풍력터빈의 동적 응답)

  • Lim, Chae-Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.6
    • /
    • pp.5-11
    • /
    • 2013
  • Torque control methods of wind turbine are mainly classified into two methods: torque-mode and speed-mode methods. The traditional torque-mode method, in which generator torque proportional to square of generator speed is determined, has been chosen in many wind turbines but its response is slower as they are larger in multi-MW size. Torque control methods based on both speed-mode and torque-mode can be used to make response of wind turbine faster. In this paper, two torque control methods based on the traditional torque-mode method are applied to a 2.75 MW wind turbine. It is shown through some simulation results for real turbulence wind speeds that torque control method based on torque-mode has the merit of reducing fluctuations of generated power than PI controller based on speed-mode.

Hysteresis and Mode Transition in Electrodeless Fluorescent Lamp (무전극 램프에서의 히스테리시스와 모드 변환)

  • Lee, Joo-Ho;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.453-453
    • /
    • 2007
  • Electrodeless fluorescent lamp exhibit two modes of operation: a low density mode in which the power is capacitively coupled to the plasma and which is known as the E-mode, and a higher density mode which is an inductive discharge known as the H-mode. The transition between these two(E to H) mode exhibits hysteresis. It is observed that transition currents change at different frequencies and hysteresis exists not only between the starting and minimum maintaining currents of the electromagnetic mode (H mode) discharge but also between the starting and minimum maintaining currents of the electrostatic mode (E mode) discharge. Hysteresis effect can be important role in dimming system.

  • PDF

A Study on the Reduction of Standby Power Consumption for Multiple Output Converters (다출력 컨버터의 대기전력 저감에 관한 연구)

  • Jung, Jee-Hoon;Choi, Jong-Moon;Kwon, Joong-Gi
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.433-440
    • /
    • 2007
  • Recently, the reduction of standby power consumption is significantly issued in electronic and electrical industry for the conservation of environment. In the case of a switched mode power supply (SMPS), it is demanded high efficiency at extremely low output power conditions by consumers. However, it is very different from high efficiency techniques at full load conditions. In addition, many SMPSs are designed as a multi-output circuit for various loads because of cost down. This circuit is difficult to implement both high efficiency and good cross regulation performance, simultaneously. In this paper, secondary side post regulator (SSPR), current mode control method, and power sequence control technique are proposed to reduce standby power consumption and to improve cross regulation performance of the multi-output SMPSs which consist of single or multiple converter. The proposed methods are analyzed by their operational principles and optimal designs verified by experimental results with 110[W] and 270[W] SMPSs.

A Wide Output Range, High Power Efficiency Reconfigurable Charge Pump in 0.18 mm BCD process

  • Park, Hyung-Gu;Jang, Jeong-A;Cho, Sung Hun;Lee, Juri;Kim, Sang-Yun;Tiwari, Honey Durga;Pu, Young Gun;Hwang, Keum Cheol;Yang, Youngoo;Lee, Kang-Yoon;Seo, Munkyo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.777-788
    • /
    • 2014
  • This paper presents a wide output range, high power efficiency reconfigurable charge pump for driving touch panels with the high resistances. The charge pump is composed of 4-stages and its configuration automatically changes based on the required output voltage level. In order to keep the power efficiency over the wide output voltage range, internal blocks are automatically activated or deactivated by the clock driver in the reconfigurable charge pump minimizing the switching power loss due to the On and Off operations of MOSFET. In addition, the leakage current paths in each mode are blocked to compensate for the variation of power efficiency with respect to the wide output voltage range. This chip is fabricated using $0.18{\mu}m$ BCD process with high power MOSFET options, and the die area is $1870{\mu}m{\times}1430{\mu}m$. The power consumption of the charge pump itself is 79.13 mW when the output power is 415.45 mW at the high voltage mode, while it is 20.097 mW when the output power is 89.903 mW at the low voltage mode. The measured maximum power efficiency is 84.01 %, when the output voltage is from 7.43 V to 12.23 V.

Performance Analysis of 6.78MHz Current Mode Class D Power Amplifier According to Load Impedance Variation (부하 임피던스 변화에 따른 6.78MHz 전류모드 D급 전력증폭기 특성 해석)

  • Go, Seok-Hyeon;Park, Dae-kil;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.166-171
    • /
    • 2019
  • This paper has designed a current mode class D power amplifier to increase the transmission efficiency of a 6.78 MHz wireless power transfer (WPT) transmitter and to ensure stable characteristics even when the transmitting and receiving coil intervals change. By reducing the loss due to the parasitic capacitor component of the transistor, which limits the theoretical efficiency of the linear amplifier, this research has improved the efficiency of the power amplifier. The circuit design simulator was used to design the high efficiency amplifier, and the power output and efficiency characteristics according to the load impedance change have been simulated and verified. In the simulation, 42.1 dBm output and 95% efficiency was designed at DC bias 30 V. The power amplifier was fabricated and showed 91% efficiency at the output of 42.1 dBm (16 W). The transmitting and receiving coils were fabricated for wireless power transfer of the drone, and the maximum power added efficiency was 88% and the output power was $42.1dBm{\pm}1.7dB$ according to the load change causing from the coil intervals.

A Study on the Low Frequency Oscillation Using PMU Measurement Data (PMU 데이터를 이용한 저주파 진동분석 연구)

  • Kim, Yonghak;Nam, Suchul;Ko, Baekkyeong;Kang, Sungbum;Shim, Kwansik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.245-252
    • /
    • 2020
  • It is very important to evaluate on/off-line stability to operate the power system stably and economically. Until now, we have continuously secured the operation reliability of the power system through the evaluation of transient, voltage and small signal stability. This paper proposes that it is possible to operate in KWAMS by applying the multi-section analysis and subspace methods and verifying the reliability of the algorithms to directly estimate the dominant oscillation mode of the power system from the signal waveform acquired from the phasor measurement units. In addition, this paper shows that the dominant oscillation mode can be detected from real-time measurement data in power systems. Therefore, if we can monitor the state of the power system in real time, it is possible to avoid a large-scale power outage by knowing the possibility of the power system accident in advance.

Analysis of continuous conduction mode boost power-factor-correction circuit (부스트 방식 역률개선회로의 설계와 특성분석)

  • Kim, Cherl-Jin;Jang, Jun-Young;Kim, Sang-Duck;Song, Yo-Chang;Yoon, Shin-Yang
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1120-1122
    • /
    • 2002
  • Switching power supply are widely used in many industrial field. Power factor improvement and harmonic reduction technique is very important in switching power supply. The power factor correction (PFC) circuit using boost converter used in input of power source is studied in this paper. It is analyzed distortional situations and harmonics of input currents that presented at continuous conduction mode(CCM) of boost PFC circuit. It is done simulations of harmonics distribution according to load variation by using PSPICE and MATLAB. From the actual experiment of boost PFC circuit the validity of the analysis is confirmed.

  • PDF

An FPGA-based Fully Digital Controller for Boost PFC Converter

  • Lai, Li;Luo, Ping
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.644-651
    • /
    • 2015
  • This paper introduces a novel digital one cycle control (DOCC) boost power factor correction (PFC) converter. The proposed PFC converter realizes the FPGA-based DOCC control approach for single-phase PFC rectifiers without input voltage sensing or a complicated two-loop compensation design. It can also achieve a high power factor and the operation of low harmonic input current ingredients over universal loads in continuous conduction mode. The trailing triangle modulation adopted in this approach makes the acquisition of the average input current an easy process. The controller implementation is based on a boost topology power circuit with low speed, low-resolution A/D converters, and economical FPGA development board. Experimental results demonstrate that the proposed PFC rectifier can obtain a PF value of up to 0.999 and a minimum THD of at least 1.9% using a 120W prototype.

Design of High Efficiency CMOS Class E Power Amplifier for Bluetooth Applications

  • Chae Seung Hwan;Choi Young Shig;Choi Hyuk Hwan;Kim Sung Woo;Kwon Tae Ha
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.499-502
    • /
    • 2004
  • A two-stage Class E power amplifier operated at 2.44GHz is designed in 0.25-$\mu$m CMOS process for Class-l Bluetooth application. The power amplifier employs c1ass-E topology to exploit its soft-switching property for high efficiency. A preamplifter with common-mode configuration is used to drive the output-stage of Class-E type. The amplifier delivers 20-dBm output power with 70$\%$ PAE (power -added-efficiency) at 2-V supply voltage.

  • PDF

AC-DC buck converter topology of high power factor with soft switching mode (소프트 스위칭 모드에 의한 고역률의 AC-DC 강압형 컨버터 토폴로지)

  • 문상필;서기영;전중함;김영철;김준홍;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.417-422
    • /
    • 1997
  • This paper proposed that a AC-DC Converter topology of high power factor with soft switching mode operates with four chopper connecting a number of parallel circuit. To improve these, a large number of soft switching topologies included a resonant circuit have been proposed. And, some simulative results on computer is included to confirm the validity of the analytical results. The partial resonant circuit makes use of a inductor using step up and a condenser of loss-less snubber. The result is that the switching loss is very low and the efficiency of system is high. And the snubber condenser used in partial resonant circuit makes charging engergy regenerated at input power source for resonant operation. The proposed conversion system is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF