• Title/Summary/Keyword: Power Mode

Search Result 4,686, Processing Time 0.028 seconds

Design of High Efficiency Class-J mode Power Amplifier using GaN HEMT with Broad-band Characteristic (GaN HEMT를 이용한 광대역 고효율 Class-J 모드 전력증폭기 설계)

  • Kim, Jae-Duk;Kim, Hyoung-Jong;Shin, Suk-Woo;Kim, Sang-Hoon;Kim, Bo-Ki;Choi, Jin-Joo;Kim, Sun-Joo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.5
    • /
    • pp.71-78
    • /
    • 2011
  • In this paper, we describe the design and implementation of a high efficiency and broad-band Class-J mode power amplifier using gallium nitride(GaN) high-electron mobility transistor(HEMT). The matching circuit of proposed class-J mode power amplifier for 2nd harmonic impedance designed to provide pure reactance alone. The measurement results show that output power of $40{\pm}1$ dBm, power-added efficiency of 50%, and drain efficiency of 60% for a continuous wave signal at 1.4 to 2.6 GHz.

New ZVZCT Bidirectional DC-DC Converter Using Coupled Inductors

  • Qian, Wei;Zhang, Xi;Li, Zhe;Jin, Wenqiang;Wiedemann, Jochen
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.11-23
    • /
    • 2019
  • In this study, a novel zero voltage zero current transition (ZVZCT) bidirectional DC-DC converter is proposed by employing coupled inductors. This converter can turn the main switch on at ZVZCT and it can turn it off with zero voltage switching (ZVS) for both the boost and buck modes. These characteristics are obtained by using a simple auxiliary sub-circuit regardless of the power flow direction. In the boost mode, the auxiliary switch achieves zero current switching (ZCS) turn-on and ZVS turn off. Due to the coupling inductors, this converter can make further efficiency improvements because the resonant energy in the capacitor or inductor can be transferred to the load. The main diode operates with ZVT turn-on and ZCS turn-off in the boost mode. For the buck mode, there is a releasing circuit to conduct the currents generated by the magnetic flux leakage to the output. The auxiliary switch turns on with ZCS and it turns off with ZVT. The main diode also turns on with ZVT and turns off with ZCS. The design method and operation principles of the converter are discussed. A 500 W experimental prototype has been built and verified by experimental results.

Implementation of Inverter Systems for DC Power Regeneration

  • Kim Kyung-Won;Yoon In-Sic;Seo Young-Min;Hong Soon-Chan;Yoon Duck-Yong
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.126-131
    • /
    • 2001
  • This paper deals with implementation of inverter systems for DC power regeneration, which can regenerate the excessive DC power from DC bus line to AC supply in substations for traction systems. From the viewpoint of both power capacity and switching losses, a three-phase square-wave inverter system is adopted. To control the regenerated power, the magnitude and phase of fundamental output voltages should be appropriately controlled in spite of the variation of input DC voltage. Inverters are operated with modified a-conduction mode to fix the potential of each arm. The overall system consists of the line-to-line voltage and line current sensors, an actual power calculator using d-q transformation method, a complex power controller with PI control scheme, a gating signal generator for modified $\alpha-conduction\;mode\;with\;\delta\;and\;\alpha$, a DPLL for frequency followup, and power circuit.

  • PDF

Design of High-Efficiency Current Mode Class-D Power Amplifier Using a Transmission-Line Transformer and Harmonic Filter at 13.56 MHz (Transmission-Line Transformer와 Harmonic Filter를 이용한 13.56 MHz 고효율 전류 모드 D급 전력증폭기 설계)

  • Seo, Min-Cheol;Jung, In-Oh;Lee, Hwi-Seob;Yang, Youn-Goo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.624-631
    • /
    • 2012
  • This paper presents a high-efficiency current mode class-D(CMCD) power amplifier for the 13.56 MHz band using a Guanella's 1:1 transmission-line transformer and filtering circuits at the output network. The second and third s are filtered out in the load network of the class-D amplifier. The implemented CMCD power amplifier exhibited a power gain of 13.4 dB and a high power-added efficiency(PAE) of 84.6 % at an output power of 44.4 dBm using the 13.56 MHz CW input signal. The second and third distortion levels were -50.3 dBc and -46.4 dBc at the same output power level, respectively.

Reducing Common-Mode Voltage of Three-Phase VSIs using the Predictive Current Control Method based on Reference Voltage

  • Mun, Sung-ki;Kwak, Sangshin
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.712-720
    • /
    • 2015
  • A model predictive current control (MPCC) method that does not employ a cost function is proposed. The MPCC method can decrease common-mode voltages in loads fed by three-phase voltage-source inverters. Only non-zero-voltage vectors are considered as finite control elements to regulate load currents and decrease common-mode voltages. Furthermore, the three-phase future reference voltage vector is calculated on the basis of an inverse dynamics model, and the location of the one-step future voltage vector is determined at every sampling period. Given this location, a non-zero optimal future voltage vector is directly determined without repeatedly calculating the cost values obtained by each voltage vector through a cost function. Without utilizing the zero-voltage vectors, the proposed MPCC method can restrict the common-mode voltage within ± Vdc/6, whereas the common-mode voltages of the conventional MPCC method vary within ± Vdc/2. The performance of the proposed method with the reduced common-mode voltage and no cost function is evaluated in terms of the total harmonic distortions and current errors of the load currents. Simulation and experimental results are presented to verify the effectiveness of the proposed method operated without a cost function, which can reduce the common-mode voltage.

Burst Mode Symbol Timing Recovery for VDL Mode-2 (VDL Mode-2에 적용 가능한 버스트 모드 심벌 타이밍 복원기)

  • Gim, Jong-Man;Choi, Seung-Duk;Eun, Chang-Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.3
    • /
    • pp.337-343
    • /
    • 2009
  • In this paper, we proposed a burst mode symbol timing recovery unit that is applicable to the VDL Mode-2 using D8PSK modulation. A method that IIR loop filter is used to minimize symbol timing error is hard to apply to burst mode because its convergence time is long. That is, the fast convergence property is important. In this paper, the proposed method takes one sample which has maximum symbol power after the initial synchronization has been achieved by using preambles. The main principle of operation is that the unit moves one sample clock to advance or retard according to symbol power. We verify that the proposed method is operated well in ${\pm}100$ ppm or greater through the test results between Australia ADS Corp. transmitter and the designed receiver.

  • PDF

Analysis of Lateral-mode Characteristics of 850-nm MQW GaAs/(Al,Ga)As Laser Diodes (850 nm GaAs/AlGaAs MQW LD의 Lateral-mode 특성 연구)

  • Yang, Jung-Tack;Kwak, Jung-Geun;Choi, An-Sik;Kim, Tae-Kyung;Choi, Woo-Young
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.2
    • /
    • pp.55-61
    • /
    • 2021
  • The lateral-mode characteristics of 850-nm GaAs/(Al,Ga)As multiple-quantum-well laser diodes and their influence on the kinks in output optical power are investigated. For the investigation, self-consistent electro-thermal-optical simulation and measurement of fabricated devices are used. From this investigation, the optimal P-cladding thickness that provides single-lateral-mode operation is determined, so that high beam quality can be achieved even at high output powers.

Power-Scalable, Sub-Nanosecond Mode-Locked Erbium-Doped Fiber Laser Based on a Frequency-Shifted-Feedback Ring Cavity Incorporating a Narrow Bandpass Filter

  • Vazquez-Zuniga, Luis Alonso;Jeong, Yoonchan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.177-181
    • /
    • 2013
  • We present an all-fiberized power-scalable, sub-nanosecond mode-locked laser based on a frequency-shifted-feedback ring cavity comprised of an erbium-doped fiber, a downshifting acousto-optic modulator (AOM), and a bandpass filter (BPF). With the aid of the frequency-shifted feedback mechanism provided by the AOM and the narrow filter bandwidth of 0.45 nm, we generate self-starting, mode-locked optical pulses with a spectral bandwidth of ~0.098 nm and a pulsewidth of 432 to 536 ps. In particular, the output power is readily scalable with pump power while keeping the temporal shape and spectral bandwidth. This is obtained via the consolidation of bound pulse modes circulating at the fundamental repetition rate of the cavity. In fact, the consolidated pulses form a single-entity envelope of asymmetric Gaussian shape where no discrete internal pulses are perceived. This result highlights that the inclusion of the narrow BPF into the cavity is crucial to achieving the consolidated pulses.

Compound-Type Hybrid Energy Storage System and Its Mode Control Strategy for Electric Vehicles

  • Wang, Bin;Xu, Jun;Cao, Binggang;Li, Qiyu;Yang, Qingxia
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.849-859
    • /
    • 2015
  • This paper proposes a novel compound-type hybrid energy storage system (HESS) that inherits the unique advantages of both battery/supercapacitor (SC) and the SC/battery HESSs for electric vehicles (EVs). Eight operation modes are designed to match this system. A mode control strategy is developed for this HESS on the basis of these modes, and five classes of operation modes are established to simplify this strategy. The mode control strategy focuses on high operating efficiency and high power output. Furthermore, the compound-type HESS is designed such that the SC is the main priority in braking energy absorption. Thus, this HESS can operate efficiently and extend battery life. Simulation results also show that the compound-type HESS can not only supply adequate power to the motor inverter but can also determine suitable operation modes in corresponding conditions. Experimental results demonstrate that this HESS can extend battery life as well. The overall efficiency of the compound-type HESS is higher than those of the battery/SC and the SC/battery HESSs.

Sliding Mode Control for an Electric Power Steering System in an Autonomous Lane Keeping System (자동 차선 유지 시스템의 전기식 파워 조향 시스템을 위한 슬라이딩 모드 제어기)

  • Yu, Jun Young;Kim, Wonhee;Son, Young Seop;Chung, Chung Choo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.95-101
    • /
    • 2015
  • In this paper, we develop a sliding mode control for steering wheel angle control based on torque overlay in order to resolve the problem of previous methods for Electric Power Steering (EPS) systems in the Lane Keeping System (LKS) of autonomous vehicles. For the controller design, we propose a 2nd order model of the electric power steering system in an autonomous LKS. The desired state model is designed to prevent a rapid change of the steering wheel angle. The sliding mode steering wheel angle controller is developed for the robustness of the disturbance. Since the proposed method is designed based on torque overlay, torque integration with basic functions of the EPS system for the steering wheel angle control is available for the driver's convenience. The performance of the proposed method was validated via experiments.