• 제목/요약/키워드: Power Limit

검색결과 1,453건 처리시간 0.031초

지하 발전소 환기설비에 대한 안전성 평가 (The Safety Assessment for Ventilation Facilities of Underground Power Plant)

  • 고원경;강승규;정영대;김영구
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.331-332
    • /
    • 2014
  • Underground power plant is required the strict safety management and safety assessment. Because it is the high risk of explosion by characteristic of enclosed space. In case gas leak of enclosed space, the ventilation facilities is very important in order to prevent explosion by the maintain less than the LEL(lower explosive limit). Thus, Through a safety assessment of ventilation volume is to reduce the risk for ventilation facilities in Underground power plant.

  • PDF

자가발전설비가 있는 산업플랜트의 전력계통 응동 해석 (Electrical Power System Studies for an Industrial Cogeneration Power Plant)

  • 윤제훈;임성호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1215-1217
    • /
    • 1999
  • Electrical studies are required to assure the proper integration of cogeneration facility into a industrial plant electrical system and the connected utility grid. Details of such study efforts are presented, including boundary limit for the system modeling, short-circuit and load flow studies, stability studies, load shedding studies, and harmonics studies.

  • PDF

운전데이터에 의한 증기터빈 발전소의 부하제어에 관한 고찰 (A Study on Load Control in a Steam Turbine Power Plant using Acquired Data)

  • 우주희;최인규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.749-751
    • /
    • 1999
  • We acquired operating data in an existing steam turbine power plant using analog control system to investigate operation characteristics. We analyzed a load control logic to develop a digital turbine control system. The load control logic is constituted of load target, load reference, loading rate, load limit and admission mode transfer of valve. The result of this paper is utilized to implement a digital turbine control system.

  • PDF

Design Guidelines for a Capacitive Wireless Power Transfer System with Input/Output Matching Transformers

  • Choi, Sung-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1656-1663
    • /
    • 2016
  • A capacitive wireless power transfer (C-WPT) system uses an electric field to transmit power through a physical isolation barrier which forms a pair of ac link capacitors between the metal plates. However, the physical dimension and low dielectric constant of the interface medium severely limit the effective link capacitance to a level comparable to the main switch output capacitance of the transmitting circuit, which thus narrows the soft-switching range in the light load condition. Moreover, by fundamental limit analysis, it can be proved that such a low link capacitance increases operating frequency and capacitor voltage stress in the full load condition. In order to handle these problems, this paper investigates optimal design of double matching transformer networks for C-WPT. Using mathematical analysis with fundamental harmonic approximation, a design guideline is presented to avoid unnecessarily high frequency operation, to suppress the voltage stress on the link capacitors, and to achieve wide ZVS range even with low link capacitance. Simulation and hardware implementation are performed on a 5-W prototype system equipped with a 256-pF link capacitance and a 200-pF switch output capacitance. Results show that the proposed scheme ensures zero-voltage-switching from full load to 10% load, and the switching frequency and the link capacitor voltage stress are kept below 250 kHz and 452 V, respectively, in the full load condition.

음향 공명 제거 및 과도 상태 전류를 제한시킨 고출력 메탈 헬라이드 램프용 전자식 안정기 설계 (The Electronic Ballast Design of Acoustic Resonance Free and Transient Over Current Limit for High Power MHL)

  • 김기남;박종연;최영민
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.904-911
    • /
    • 2010
  • This paper presents the design of acoustic resonance free and over current limit during transient state consideration electronic ballast for 1.5kW Metal-Halide Lamp(MHL) that employs frequency modulation (FM) technique. The proposed ballast consists of a Full-Bridge(FB) rectifier, a passive power factor correction (PFC) circuit, a full-bridge inverter, an ignitor using LC resonance and a control circuit for frequency modulation. The frequency modulation technique is the most effective solution to eliminate acoustic resonance among other technique. It spreads power spectrum of lamp to reduce the supplied power spectrum under the energy level of eigen-value frequency. Moreover, the proposed ballast is simple and cost effective above conventional ballast. A new PFC circuit is proposed which combines with LCD type and PCSR filter. A new PFC circuit has higher PF and lower THD than conventional LCD type and secure high reliability. Finally, to protected switching components in transient state, the surge current into ballast is limited by increase the switching frequency. Performance of the proposed ballast was validated through computer simulation using Pspice, experimentation and by applying it to an electronic ballast for a prototype 1.5kW MHL.

Multi-Valued Logic Device Technology; Overview, Status, and Its Future for Peta-Scale Information Density

  • Kim, Kyung Rok;Jeong, Jae Won;Choi, Young-Eun;Kim, Woo-Seok;Chang, Jiwon
    • Journal of Semiconductor Engineering
    • /
    • 제1권1호
    • /
    • pp.57-63
    • /
    • 2020
  • Complementary metal-oxide-semiconductor (CMOS) technology is now facing a power scaling limit to increase integration density. Since 1970s, multi-valued logic (MVL) has been considered as promising alternative to resolve power scaling challenge for increasing information density up to peta-scale level by reducing the system complexity. Over the past several decades, however, a power-scalable and mass-producible MVL technology has been absent so that MVL circuit and system implementation have been delayed. Recently, compact MVL device researches incorporating multiple-switching characteristics in a single device such as 2D heterojunction-based negative-differential resistance (NDR)/transconductance (NDT) devices and quantum-dot/superlattices-based constant intermediate current have been actively performed. Meanwhile, wafer-scale, energy-efficient and variation-tolerant ternary-CMOS (T-CMOS) technology has been demonstrated through commercial foundry. In this review paper, an overview for MVL development history including recent studies will be presented. Then, the status and its future research direction of MVL technology will be discussed focusing on the T-CMOS technology for peta-scale information processing in semiconductor chip.

최대 전력 평형/불평형 경계점 제어를 이용한 MPPT제어에 관한 연구 (A Study on MPPT Control using the Maximum Power Balance/Unbalance Boundary Point Control)

  • 고강훈;강태경;이현우;우정인
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권1호
    • /
    • pp.33-38
    • /
    • 2006
  • This paper proposes a simple MPPT control scheme of a based Current-Control-Loop system that can be obtains a lot of advantage to compare with another digital control method, P&O(Perturbation and Observation) and IncCond(Incremental Conductance) algorithm, that is applied mostly a PV system. An existent method is needed an expensive processor such as DSP that calculated to change the measure power of a using current and voltage sensor at the once. Therefore, it is applied a small home power generation system that required many expenses. But, a proposed method is easy to solve the cost reduction and power unbalance Problems that it is used by control scheme to limit error of a current control of common sensor. This proposed algorithm had verified through a simulation and an experiment results on battery charger using PIC that is the microprocessor of a low price.

Effects of Zero-Sequence Transformations and Min-Max Injection on Fault-Tolerant Symmetrical Six-Phase Drives with Single Isolated Neutral

  • Munim, Wan Noraishah Wan Abdul;Tousizadeh, Mahdi;Che, Hang Seng
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.968-979
    • /
    • 2019
  • Recently, there has been increased interest in the study of multiphase machines due to their higher fault-tolerant capability when compared to their conventional three-phase counterparts. For six-phase machines, stator windings configured with a single isolated neutral (1N) provide significantly more post-fault torque/power than two isolated neutrals (2N). Hence, this configuration is preferred in applications where post-fault performance is critical. It is well known that min-max injection has been commonly used for three-phase and multiphase machines in healthy condition to maximize the modulation limit. However, there is a lack of discussion on min-max injection for post-fault condition. Furthermore, the effects in terms of the common-mode voltage (CMV) in modulating signals has not been discussed. This paper investigates the effect of min-max injection in post fault-tolerant control on the voltage and speed limit of a symmetrical six-phase induction machine with single isolated neutral. It is shown that the min-max injection can minimize the amplitude of reference voltage, which maximizes the modulation index and post-fault speed of the machine. This in turn results in a higher post-fault power.

병렬 3레벨 AC/DC 전력변환 시스템의 영상분 순환전류 억제 (Suppression of Circulating Current in Parallel Operation of Three-Level AC/DC Converters)

  • 손영광;지승준;이영기;설승기
    • 전력전자학회논문지
    • /
    • 제21권4호
    • /
    • pp.312-319
    • /
    • 2016
  • Zero-sequence Circulating Current (ZSCC) flows inevitably in parallel converters that share common DC and AC sources. The ZSCC commonly flowing in all converters increases loss and decreases the overall capacity of parallel converters. This paper proposes a simple and effective ZSCC suppression method based on the Space Vector PWM (SVPWM) with the ZSCC controller. The zero-sequence voltage for the proposed SVPWM is calculated on the basis of the grid voltage and not on the phase voltage references. The limit of the linear modulation region of the converters with the proposed method is analyzed and compared with other methods, thereby proving that the limit of the region can be extended with the proposed method. The effectiveness of the proposed method has been verified through the experimental setup comprising four parallel three-level converters. The ZSCC is confirmed to be well suppressed, and the linear modulation region is extended simultaneously with the proposed method. Moreover, the proposed control method does not require any communication between the converters to suppress the ZSCC unlike other conventional methods.

속도 오버슈트 발생 시 제한 속도를 초과하지 않는 실속형 블레이드 풍력터빈의 속도제어기 설계 (Design of Speed Controller for Stall Blade Wind Turbine Complying with the Speed Limit During Speed Overshoot)

  • 김예찬;송승호
    • 전력전자학회논문지
    • /
    • 제27권5호
    • /
    • pp.438-445
    • /
    • 2022
  • Blade efficiency decreases when the rotor speed is kept constant even though the wind speed is higher than the rated value. Therefore, a speed controller is used to regulate the rotor speed in the high-wind-speed region. In stall-blade wind turbine, the role of the speed controller is important because precise aerodynamic regulation is unavailable. In this study, an effective parameter design method of a PI speed controller is proposed to limit the speed overshoot of a type 4 wind turbine with stall blades even though wind gust occurs. The proposed method considers the efficiency characteristics of the stall blade and the mechanical inertia of the wind turbine rotor. It determines the bandwidth of the speed controller to comply with the speed limit during generator speed overshoot for the worst case of wind gust. The proposed method is verified through intensive simulations with a MATLAB/SIMULINK model and experimental results obtained using a 3 kW MG set of wind turbine simulator.