• Title/Summary/Keyword: Power Lift

Search Result 387, Processing Time 0.028 seconds

Improvement of LCC-HVDC Input-Output Characteristics using a VSC-MMC Structure

  • Kim, Soo-Yeon;Park, Seong-Mi;Park, Sung-Jun;Kim, Chun-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_1
    • /
    • pp.377-385
    • /
    • 2021
  • High voltage direct current(HVDC) systems has been an alternative method of a power transmission to replace high voltage alternate current(HVAC), which is a traditional AC transmission method. Due to technical limitations, Line commutate converter HVDC(LCC-HVDC) was mainly used. However, result from many structural problems of LCC-HVDC, the voltage source converter HVDC(VSC-HVDC) are studied and applied recently. In this paper, after analyzing the reactive power and output voltage ripple, which are the main problems of LCC-HVDC, the characteristics of each HVDC are summarized. Based on this result, a new LCC-HVDC structure is proposed by combining LCC-HVDC with the MMC structure, which is a representative VSC-HVDC topology. The proposed structure generates lower reactive power than the conventional method, and greatly reduces the 12th harmonic, a major component of output voltage ripple. In addition, it can be easily applied to the already installed LCC-HVDC. When the proposed method is applied, the control of the reactive power compensator becomes unnecessary, and there is an advantage that the cut-off frequency of the output DC filter can be designed smaller. The validity of the proposed LCC-HVDC is verified through simulation and experiments.

Capacitor Failure Detection Technique for Microgrid Power Converter (마이크로그리드 전력변환장치용 커패시터 고장 검출 기법)

  • Woo-Hyun Lee;Gyang-Cheol Song;Jun-Jae An;Seong-Mi Park;Sung-Jun Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1117-1125
    • /
    • 2023
  • The DC part of the DC microgrid power conversion system uses capacitors for buffers of charge and discharge energy for smoothing voltage and plays important roles such as high frequency component absorption, power balancing, and voltage ripple reduction. The capacitor uses an aluminum electrolytic capacitor, which has advantages of capacity, low price, and relatively fast charging/discharging characteristics. Aluminum electrolytic capacitors(AEC) have previous advantages, but over time, the capacity of the capacitors decreases due to deterioration and an increase in internal temperature, resulting in a decrease in use efficiency or an accident such as steam extraction due to electrolyte evaporation. It is necessary to take measures to prevent accidents because the failure diagnosis and detection of such capacitors are a very important part of the long-term operation, safety of use, and reliability of the power conversion system because the failure of the capacitor leads to not only a single problem but also a short circuit accident of the power conversion system.

Hybrid High-efficiency Synchronous Converter using Si IGBT and SiC MOSFET

  • Il Yang;Woo-Joon Kim;Tuan-Vu Le;Seong-Mi Park;Sung-Jun Park;Ancheng Liu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_1
    • /
    • pp.967-976
    • /
    • 2023
  • Currently, with the thriving development in the field of solar energy, the widespread adoption of solar grid-connected power conversion systems is rapidly expanding. As the market continues to grow, the efficiency of solar power conversion systems is steadily increasing, while prices are rapidly decreasing. Photovoltaic panels often produce low output voltages, and Boost converters are commonly employed to elevate and stabilize these voltages. They are also utilized for implementing Maximum Power Point Tracking (MPPT), ensuring the full utilization of solar power generation. Recently, synchronous control techniques have been introduced, using controllable switching devices like Si IGBT or SiC MOSFET to replace the diodes in the original circuits. However, this has raised concerns related to costs. This paper offers a compromise solution, considering both the performance and economic factors of the converter. It proposes a hybrid high-efficiency synchronous converter structure that combines Si IGBT and SiC MOSFET. Additionally, the proposed topology has been practically implemented and tested, with results confirming its feasibility and cost-effectiveness.

A Study on the Development of Wind Turbine using the lift and drag for the Offshore (양력 및 항력 조합형 해상용 풍력발전기 개발에 관한 연구)

  • Kim, Namhun;Lee, Byeongseong;Yoon, Yangil;Oh, Jinseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.183.3-183.3
    • /
    • 2010
  • This is the research of wind turbine that is designed to supply power to offshore buoy system. In order to reach maximum efficiency in limited space, vertical axis wind turbine was used. Vertical axis wind turbine system that was applied in this research has the form of lift and drag blade combined to achieve high efficiency at both high and low speed. In addition, support system was designed and developed to suit the offshore condition.

  • PDF

Flow Simulation past a Circular Cylinder by 2-D URANS (2-D URANS에 의한 원형 실린더 주위의 와류유출 유동 수치해석)

  • Myong Hyon Kook
    • Journal of computational fluids engineering
    • /
    • v.9 no.4
    • /
    • pp.48-54
    • /
    • 2004
  • Vortex-shedding flows past a circular cylinder for 200≤ Re ≤ 5000 are numerically simulated with the PowerCFD code, using a finite volume method and an unstructured grid system, developed by the author. The simulation is peformed by solving the unsteady 2-D Wavier-Stokes equations with both no model and turbulence model. The resulting Reynolds number dependence of the Strouhal number and of the drag and lift coefficients is compared with both experiments and previous numerical results. It is found that, in the range of 200≤ Re ≤ 5000 the calculation method with a turbulence model is capable of producing reasonably more accurate results than that with no model for the main practically relevant parameters such as Strouhal number, drag and lift coefficients.

Lift/Drag Prediction of 3-Dimensional WIG Moving Above Free Surface

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.384-391
    • /
    • 2001
  • The aerodynamic effects of a 3-dimensional Wing in Ground Effect (WIG) which moves above the free surface has been numerically investigated via finite difference techniques. The air flow field around a WIG is analyzed by a Marker & Cell (MAC) based method, and the interactions between WIG and the free surface are studied by the pressure distributions on the free surface. Waves are generated by the surface pressure distribution, and a Navier-Stokes solver has been employed, to include the nonlinearities in the free surface conditions. The pressure values Cp and lift/drag ratio are reviewed by changing the height/chord ratio. In the present computations a NACA0012 airfoil with a span/chord ratio of 3.0 are treated. Through computational results, it is confirmed that the free surface can be treated as a rigid wavy wall.

  • PDF

A Study on Design of Wind Turbine Blade and Aerodynamic Analysis (수평축 풍력터빈 블레이드의 공력해석 및 설계에 관한 연구)

  • Kim, J.H.;Kim, B.S.;Yoon, S.H.;Lee, Y.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.631-638
    • /
    • 2003
  • The wind turbine blade is the equipment converted wind into electric energy. The effect of the blade has influence of the output power and efficiency of wind turbine. The design of blade is considered of lift-to-drag ratio, structure, a condition of process of manufacture and stable maximum lift coefficient, etc. This study is used the simplified method for design of the aerodynamic blade and aerodynamic analysis used blade element method. This process is programed by delphi-language. The program has any input values such as tip speed ratio, blade length, hub length, a section of shape and max lift-to-drag ratio. The program displays chord length and twist angle by input value and analyzes performance of the blade.

  • PDF

Development Status and Economic Efficiency of PAV (PAV의 개발현황과 경제적 효율성 비교)

  • Song, Jaedo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.1
    • /
    • pp.61-73
    • /
    • 2021
  • PAV is considered to improve quality of life and standards of living, improvement of which was caused by automobile hundred years ago. Comparative economic efficiency of PAVs is measured to compare each PAV. Specification and sales price of the PAVs are open to the public. BlackFly, Transition and Aeromobil 3.0 have competitive power in flying range, purchasing cost, and operational cost. Lift & cruise configuration and vectored thrust configuration PAVs are designed by many companies nowadays, and BlackFly which can be considered to be lift & cruise configuration is one of the most efficient PAVs. High battery price does not help multi-copter shaped PAVs to have economic efficiency. Aerodynamic wing, eVTOL, and low sale price are needed for PAVs to ride a wave of public interest as a new personal mobility. Under the conditions, the PAV can fly at downtown and can be purchased by people at large. Popularization of PAV could follow in the 100 years old footsteps of automobile.

A Study on Automatic Multi-Power Synchronous Transfer Switch using New DFT Comparator (새로운 DFT 비교기를 이용한 자동 다전원 동기절체 스위치에 관한 연구)

  • Kwak, A-Rim;Park, Seong-Mi;Son, Gyung-Jong;Park, Sung-Jun;Kim, Jong-Cheol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.423-431
    • /
    • 2022
  • The UPS(Uninterruptible Power Supply) system operates in the battery charging mode when the grid is normal, and in the UPS mode, which is the battery discharge mode when a grid error occurs. Since the UPS must supply the same voltage as the grid to the load within 4 [ms] in case of a grid error, the switching time and power recovery time should be short when controlling the output voltage and current of the UPS, and the power failure detection time is also important. The power outage detection algorithm using DFT(Discrete Fourier Transform) proposed in this paper compares the grid voltage waveform with the voltage waveform including the 9th harmonic generated through DFT using Schmitt trigger to detect power outage faster than the existing power outage monitoring algorithm. There are advantages. Therefore, it is possible to supply instant and stable power when switching modes in the UPS system. The multi-power-applied UPS system proposed in this paper uses DFT, which is faster than the conventional blackout monitoring algorithm in detecting power failure, to provide stable power to the load in a shorter time than the existing power outage monitoring algorithm when a system error occurs. The detection method was applied. The changeover time of mode switching was set to less than 4 [ms], which is 1/4 of the system cycle, in accordance with KSC 4310 regulation, which was established by the Industrial Standards Council on the regulation of uninterruptible power supply. A 10 [kW] UPS system in which commercial voltage, vehicle generator, and auxiliary diesel generator can be connected to each of the proposed transfer devices was constructed and the feasibility was verified by conducting an experiment.

Integrated Optimal Design for Suspension to Improve Load/Unload Performance (로드/언로드 성능향상을 위한 서스팬션의 구조최적화)

  • Kim, Ki-Hoon;Son, Suk-Ho;Park, Kyoung-Su;Yoon, Sang-Joon;Park, No-Cheol;Yang, Hyun-Seok;Choi, Dong-Hoon;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.130-137
    • /
    • 2006
  • The HDD(hard disk drive) using Load/unload(L/UL) technology includes the benefits which are increased areal density, reduced power consumption and improved shock resistance than those of contact-start-stop(CSS). It has been widely used in portable hard disk drive and will become the key technology for developing the small form factor hard disk drive. The main objects of L/UL are no slider-disk contact or no media damage. For realizing those, we must consider many design parameters in L/UL system. In this paper, we focus on lift-off force. The 'lift-off' force, defined as the minimum air bearing force, is another very important indicator of unloading performance. A large amplitude of lift-off force increases the ramp force, the unloading time, the slider oscillation and contact-possibility. To minimize 'lift-off' force we optimizes the slider and suspension using the integrated optimization frame, which automatically integrates the analysis with the optimization and effectively implements the repetitive works between them. In particular, this study is carried out the optimal design considering the process of modes tracking through the entire optimization processes. As a result, we yield the equation which can easily find a lift-off force and structural optimization for suspension.

  • PDF