• Title/Summary/Keyword: Power Information Technology

Search Result 5,070, Processing Time 0.029 seconds

Applications of online simulation supporting PWR operations

  • Wang, Chunbing;Duan, Qizhi;Zhang, Chao;Fan, Yipeng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.842-850
    • /
    • 2021
  • Real Time Simulation (RTS) has long been used in the nuclear power industry for operator training and engineering purposes. And, Online Simulation (OLS) is based on RTS and with connection to the plant information system to acquire the measurement data in real time for calibrating the simulation models and following plant operation, for the purposes of analyzing plant events and providing indicative signs of malfunctioning. An OLS system has been developed to support PWR operations for CPR1000 plants. The OLS system provides graphical user interface (GUI) for operators to monitor critical plant operations for preventing faulty operation or analyzing plant events. Functionalities of the OLS system are depicted through the maneuvering of the GUI for various OLS functional modules in the system.

Digital Sequence CPLD Technology Mapping Algorithm

  • Youn, Choong-Mo
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.131-135
    • /
    • 2007
  • In this paper, The proposed algorithm consists of three steps. In the first step, TD(Transition Density) calculation has to be performed. a CLB-based CPLD low-power technology mapping algorithm considered a Trade-off is proposed. To perform low-power technology mapping for CPLDs, a given Boolean network has to be represented in a DAG. Total power consumption is obtained by calculating the switching activity of each node in a DAG. In the second step, the feasible clusters are generated by considering the following conditions: the number of inputs and outputs, the number of OR terms for CLB within a CPLD. The common node cluster merging method, the node separation method, and the node duplication method are used to produce the feasible clusters. In the final step, low-power technology mapping based on the CLBs packs the feasible clusters. The proposed algorithm is examined using SIS benchmarks. When the number of OR terms is five, the experiment results show that power consumption is reduced by 30.73% compared with TEMPLA, and by 17.11 % compared with PLA mapping.

SOM-based Spatio-Temporal Data Mining System (SOM 기반 시공간 데이터 마이닝 시스템)

  • Kang Juyoung;Lee Bongjae;Song Jaeju;Shin Jinho;Yong Hwanseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.105-108
    • /
    • 2004
  • 데이터 양이 급증함에 따라 축적된 데이터로부터 의미있는 지식을 추출해 내고자 하는 데이터 마이닝에 대한 연구가 활발하게 진행되어 왔다. 특히 최근, 환경이 이동 분산화 되어감에 따라 감시${\cdot}$모니터링 시스템, 기상 관측 시스템, GPS 시스템과 같은 다양한 응용 시스템으로부터 방대한 양의 시공간 데이터가 발생하게 되었고, 이른 효율적으로 분석하고자 하는 시공간 데이터 마이닝 연구에 대한 관심이 더욱 높아지고 있다. 기존의 데이터 마이닝 기법의 경우 문자나 숫자 데이터를 대상으로 최적화 되어있기 때문에 시${\cdot}$공간 속성을 동시에 가지는 데이터를 분석하기에는 한계가 있는 것이 사실이다. 본 논문에서는 SOM(Self-Organizing Map)을 적용하여 시공간 클러스터링 모듈을 개발하고, 개발된 모듈의 성능 및 클러스터링 정확성을 다른 세 가지 군집분석 알고리즘과 비교, 분석하였다. 또한 가시화 모듈을 개발하여 입력 데이터의 특성과 결과를 더욱 정확하게 분석할 수 있도록 하였다.

  • PDF

Power Saving and Improving the Throughput of Spectrum Sharing in Wideband Cognitive Radio Networks

  • Li, Shiyin;Xiao, Shuyan;Zhang, Maomao;Zhang, Xiaoguang
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.394-405
    • /
    • 2015
  • This paper considers a wideband cognitive radio network which can simultaneously sense multiple narrowband channels and thus aggregate the detected available channels for transmission and proposes a novel cognitive radio system that exhibits improved sensing throughput and can save power consumption of secondary user (SU) compared to the conventional cognitive radio system studied so far. More specifically, under the proposed cognitive radio system, we study the problem of designing the optimal sensing time and power allocation strategy, in order to maximize the ergodic throughput of the proposed cognitive radio system under two different schemes, namely the wideband sensing-based spectrum sharing scheme and the wideband opportunistic spectrum access scheme. In our analysis, besides the average interference power constraint at primary user, the average transmit power constraint of SU is also considered for the two schemes and then a subgradient algorithm is developed to obtain the optimal sensing time and the corresponding power allocation strategy. Finally, numerical simulations are presented to verify the performance of the two proposed schemes.

Comparative Analysis of a Competitive Technology for Major Future Energy Resources

  • Koo Young-Duk;Kim Eun-Sun;Park Young-Seo
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.2
    • /
    • pp.101-104
    • /
    • 2005
  • Recently advanced countries are making every effort to promote the efficiency of electric power production and supply, to deal with the environmental problems, and to develop the new energy. In particular, they are driving forward to develop various technologies for electric power in mid-long term, that are technology for building infrastructure of power transportation, establishing service network for account management using electronic technologies, elevating economic productivity by innovative electronic technologies, control-ling the discharge of global warming gas, using clean efficient energy, and so forth. However, power technology of Korea lagged behind than technology of advanced countries. Also, resources for developing power technology are limited in our country. Therefore, it is necessary to improve the efficiency of R&D investment. For it, our country must compare and analyze with technologies of advanced countries which are taking competitive advantage in the main future energy. Through comparative analysis, limited R&D resources of our country must be concentrated on technologies that can secure competitive advantage from now on.

Improving Physical-Layer Security for Full-duplex Radio aided Two-Way Relay Networks

  • Zhai, Shenghua;An, Jianping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.562-576
    • /
    • 2020
  • The power allocation optimization problem is investigated for improving the physical-layer security in two-way relaying networks, where a full-duplex relay based half-jamming protocol (HJP-FDR) is considered. Specially, by introducing a power splitter factor, HJP-FDR divides the relay's power into two parts: one for forwarding the sources' signals, the other for jamming. An optimization problem for power split factor is first developed, which is proved to be concave and closed-form solution is achieved. Moreover, we formulate a power allocation problem to determine the sources' power subject to the total power constraint. Applying the achieved closed-form solutions to the above-mentioned problems, a two-stage strategy is proposed to implement the overall power allocation. Simulation results highlight the effectiveness of our proposed algorithm and indicate the necessity of optimal power allocation.

Cooperation Scheme for Electric Power and Information & Communications Technology among Korean Peninsula and North-Eastern Asia Region (한반도와 동북아지역의 전력 및 정보통신기술협력방안)

  • 윤갑구
    • Journal of the Korean Professional Engineers Association
    • /
    • v.33 no.4
    • /
    • pp.17-26
    • /
    • 2000
  • This study has been done to make a practical suggestion in figuring out required size of electricity power facility in preparation for reunion of Korean Peninsula, estimated based on capacity increase and demand changes in the past. In making the suggestion, balanced development of South and North Korea Economy, recovery of existing power facilities, and construction of new power facilities were taken into consideration. As an alternatives, study result of power system interconnections in Korean Peninsula and/or in North-East Asia Region, PEACE Network, is suggested with a cooperation scheme of information and communications technology as an extra advantage. Concluded a cooperation of electric power system and information & communications technology in the peninsula is expected to be a great opportunity in developing electric power economy, maintaining clear environment, improving security of power supply in the region, and in reunion of Korean Peninsula and peace in the world.

  • PDF

A Learning-based Power Control Scheme for Edge-based eHealth IoT Systems

  • Su, Haoru;Yuan, Xiaoming;Tang, Yujie;Tian, Rui;Sun, Enchang;Yan, Hairong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4385-4399
    • /
    • 2021
  • The Internet of Things (IoT) eHealth systems composed by Wireless Body Area Network (WBAN) has emerged recently. Sensor nodes are placed around or in the human body to collect physiological data. WBAN has many different applications, for instance health monitoring. Since the limitation of the size of the battery, besides speed, reliability, and accuracy; design of WBAN protocols should consider the energy efficiency and time delay. To solve these problems, this paper adopt the end-edge-cloud orchestrated network architecture and propose a transmission based on reinforcement algorithm. The priority of sensing data is classified according to certain application. System utility function is modeled according to the channel factors, the energy utility, and successful transmission conditions. The optimization problem is mapped to Q-learning model. Following this online power control protocol, the energy level of both the senor to coordinator, and coordinator to edge server can be modified according to the current channel condition. The network performance is evaluated by simulation. The results show that the proposed power control protocol has higher system energy efficiency, delivery ratio, and throughput.

Contract Theory Based Cooperative Spectrum Sharing with Joint Power and Bandwidth Optimization

  • Lu, Weidang;He, Chenxin;Lin, Yuanrong;Peng, Hong;Liu, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5803-5819
    • /
    • 2017
  • In this paper, we proposed a contract theory based cooperative spectrum sharing scheme with joint power and bandwidth optimization under asymmetric information, where the primary user (PU) does not know the secondary users' (SUs) private information. To improve performance, PU needs to provide incentives to stimulate nearby SUs to help forward its signal. By using contract theory, PU and SUs' negotiations are modeled as a labor market. PU and SUs act as the employer and employees, respectively. Specifically, SUs provide labor (i.e. the relay power, which can be used for forwarding PU's signal) in exchange for the reward (i.e. the spectrum access bandwidth which can be used for transmitting their own signals). PU needs to overcome a challenge how to balance the relationship between contributions and incentives for the SUs. We study the optimal contract design which consists of relay power and spectrum access bandwidth allocation. We show that the most efficient SUs will be hired by the PU to attend the cooperative communication. PU can achieve the same maximum utility as in the symmetric information scenario. Simulation results confirm that the utility of PU is significantly enhanced with our proposed cooperative spectrum sharing scheme.

Model Predictive Power Control of a PWM Rectifier for Electromagnetic Transmitters

  • Zhang, Jialin;Zhang, Yiming;Guo, Bing;Gao, Junxia
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.789-801
    • /
    • 2018
  • Model predictive direct power control (MPDPC) is a widely recognized high-performance control strategy for a three-phase grid-connected pulse width modulation (PWM) rectifier. Unlike those of conventional grid-connected PWM rectifiers, the active and reactive powers of permanent magnet synchronous generator (PMSG)-connected PWM rectifiers, which are used in electromagnetic transmitters, cannot be calculated as the product of voltage and current because the back electromotive force (EMF) of the generator cannot be measured directly. In this study, the predictive power model of the rectifier is obtained by analyzing the relationship among flux, back EMF, active/reactive power, converter voltage, and stator current of the generator. The concept of duty cycle control in the proposed MPDPC is introduced by allocating a fraction of the control period for a nonzero vector and rest time for a zero vector. When nonzero vectors and their duration in the predefined cost function are simultaneously evaluated, the global power ripple minimization is obtained. Simulation and experimental results prove that the proposed MPDPC strategy with duty cycle control for the PMSG-connected PWM rectifier can achieve better control performance than the conventional MPDPC-SVM with grid-connected PWM rectifier.