• 제목/요약/키워드: Power Inductor

검색결과 998건 처리시간 0.023초

Proposal of Potted Inductor with Enhanced Thermal Transfer for High Power Boost Converter in HEVs

  • You, Bong-Gi;Ko, Jeong-Min;Kim, Jun-Hyung;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1075-1080
    • /
    • 2015
  • A hybrid electric vehicle (HEV) powertrain has more than one energy source including a high-voltage electric battery. However, for a high voltage electric battery, the average current is relatively low for a given power level. Introduced to increase the voltage of a HEV battery, a compact, high-efficiency boost converter, sometimes called a step-up converter, is a dc-dc converter with an output voltage greater than its input voltage. The inductor occupies more than 30% of the total converter volume making it difficult to get high power density. The inductor should have the characteristics of good thermal stability, low weight, low losses and low EMI. In this paper, Mega Flux® was selected as the core material among potential core candidates. Different structured inductors with Mega Flux® were fabricated to compare the performance between the conventional air cooled and proposed potting structure. The proposed inductor has reduced the weight by 75% from 8.8kg to 2.18kg and the power density was increased from 15.6W/cc to 56.4W/cc compared with conventional inductor. To optimize the performance of proposed inductor, the potting materials with various thermal conductivities were investigated. Silicone with alumina was chosen as potting materials due to the high thermo-stable properties. The proposed inductors used potting material with thermal conductivities of 0.7W/m·K, 1.0W/m·K and 1.6W/m·K to analyze the thermal performance. Simulations of the proposed inductor were fulfilled in terms of magnetic flux saturation, leakage flux and temperature rise. The temperature rise and power efficiency were measured with the 40kW boost converter. Experimental results show that the proposed inductor reached the temperature saturation of 107℃ in 20 minutes. On the other hand, the temperature of conventional inductor rose by 138℃ without saturation. And the effect of thermal conductivity was verified as the highest thermal conductivity of potting materials leads to the lowest temperature saturations.

Parallel PCS Interconnection Current Surge Elimination Technique Using a Coupled Inductor

  • Choe, Jung-Muk;Byen, Byeng-Joo;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.827-833
    • /
    • 2014
  • This study proposes a coupled inductor method for the parallel operation of a power conditioning system (PCS). When primary and secondary currents flow in the same direction in a coupled inductor, total flux and inductance are cancelled; when currents flow in opposite directions, each flux becomes an individual inductor. These characteristics are applied in the parallel operation of a PCS. To connect at a grid code, abnormal current, which is barred under the grid connection code, is blocked by using a coupled inductor. A design based on the capacity and current duration time of a PCS is verified through hardware implementation. Experiment results show the effectiveness of variance reduction.

낮은 커플링 변압기를 갖는 LCLC 공진컨버터 동작특성 (Operating Characteristics in LCLC Resonant Converter with A Low Coupling Transformer.)

  • 공영수;김은수;이현관;조정구;김윤호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권7호
    • /
    • pp.343-350
    • /
    • 2005
  • Conventionally, for transferring the primary power to the secondary one, the high frequency series resonant converter has been widely used for the contactless power supply system. However, the high frequency series resonant converter has the disadvantages such as the low efficiency, the high voltage gain characteristics and deviation of the phase angle in the overall load range. To improve this disadvantages, In this paper, the characteristics of the high efficiency and unit voltage gain as well as in-phase are revealed in the proposed three-level LCLC (Inductor-Capacitor- Inductor-Capacitor) resonant converter. The results are verified on the simulation based on the theoretical analysis and the 4kW experimental Prototype.

Selection of Coupling Factor for Minimum Inductor Current Ripple in Multi-winding Coupled Inductor Used in Bidirectional DC-DC Converters

  • Kang, Taewon;Suh, Yongsug
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.879-891
    • /
    • 2018
  • A bidirectional dc-dc converter is used in battery energy storage systems owing to the growing requirements of a charging and discharging mode of battery. The magnetic coupling of output or input inductors in parallel-connected multi modules of a bidirectional dc-dc converter is often utilized to reduce the peak-to-peak ripple size of the inductor current. This study proposes a novel design guideline to achieve minimal ripple size of the inductor current under bidirectional power flow. The newly proposed design guideline of optimized coupling factor is applicable to the buck and boost operation modes of a bidirectional dc-dc converter. Therefore, the coupling factor value of the coupled inductor does not have to be optimized separately for buck and boost operation modes. This new observation is explained using the theoretical model of coupled inductor and confirmed through simulation and experimental test.

NiZn 페라이트를 내장한 LTCC 인덕터 개발 및 응용 (An LTCC Inductor Embedding NiZn Ferrite and Its Application)

  • 원유준;김희준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.939-940
    • /
    • 2006
  • An integrated inductor using the low-temperature co-fired ceramics(LTCC ) technology for low-power electronics was fabricated. In the inductor NiZn ferrite sheet(${\mu}_r=230$), was embedded to increase inductance. The inductor has Ag spiral coil with 14 turns($7turns{\times}2layers$), a dimension of 0.6mm in width, 10um in thickness, and 0.15mm pitch. To evaluate the inductance, including the parasitic resistance, the fabricated inductor was calculated and measured. It was confirmed that calculated values were very close to the measured values. Finally as an application of the LTCC integrated inductor to low power electronic circuits, a LTCC buck DC/DC converter with 1W output power and up to 0.5MHz switching frequency using the inductor fabricated was develop.

  • PDF

Analysis and Design of the Interface Inductor and the DC Side Capacitor in a STATCOM with Phase and Amplitude Control Considering the Stability of the System

  • Zhao, Guopeng;Han, Minxiao;Liu, Jinjun
    • Journal of Power Electronics
    • /
    • 제12권1호
    • /
    • pp.193-200
    • /
    • 2012
  • Previous publications regarding the design and specifications of the interface inductor and the DC side capacitor for a STATCOM usually deal with the interface inductor and the DC side capacitor only. They seldom pay attention to the influences of the interface inductor and capacitor on the performance of a STATCOM system. In this paper a detailed analysis of influence of the interface inductor and the DC side capacitor on a STATCOM system and the corresponding design considerations is presented. Phase and amplitude control is considered as the control strategy for the STATCOM. First, a model of a STATCOM system is carried out. Second, through frequency domain methods, such as transfer functions and Bode plots, the influence of the interface inductor and the DC side capacitor on the stability and filtering characteristics of the STATCOM are extensively investigated. Third, according to this analysis, the design considerations based on the phase margin for the interface inductor and the DC side capacitor are discussed, which leads to parameters that are different from those of the traditional design.

Coupled Inductor Design Method for 2-Phase Interleaved Boost Converters

  • Liang, Dong;Shin, Hwi-Beom
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.344-352
    • /
    • 2019
  • To achieve high efficiency and reliability, multiphase interleaved converters with coupled inductors have been widely applied. In this paper, a coupled inductor design method for 2-phase interleaved boost converters is presented. A new area product equation is derived to select the proper core size. The wire size, number of turns and air gap length are also determined by using the proposed coupled inductor design method. Finally, the validity of the proposed coupled inductor design method is confirmed by simulation and experimental results obtained from a design example.

휴대용 이동 통신기기의 슬림화를 위한 전력용 인덕터의 연구 (A Study of Power Inductor for Slim Mobile Communication Set)

  • 김두일;서종고;김성일;엄재현;정진휘;이해종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.48-50
    • /
    • 2005
  • As technology is developed, customers want to use many functions in one system. Manufacturers want to reach the customer's needs, make systems more small, thin, light-weight. To make them real, it is necessary to make components to be small and thin. But components of power stage are big, thick and heavy-weighted yet. especially power inductor is the most significant component. This paper proposed a novel chip-type power inductor I-type inductor. Inductor that proposed has 3225-size, 5.6uH and 1.3A of max saturation current. And it has $R_{DC}$ of $0.25{\Omega}$ which is smaller than $0.45{\Omega}$ of chip-type inductor and $0.9{\Omega}$ of coil-type inductor.

  • PDF

결합인덕터와 직렬 공진을 이용한 비절연 다중 LED 전류 평형 기법 (Nonisolated Multichannel LED Current Balancing Scheme Using Coupled Inductor and Series Resonant Converter)

  • 신유용;홍다헌;최병조;차헌녕
    • 전력전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.249-255
    • /
    • 2021
  • A novel current balancing technique for multichannel light-emitting diode (LED) that uses a series resonance and coupled inductor is proposed in this paper. The proposed LED driver balances output currents through frequency control and enables zero-voltage switching. The proposed converter utilizes the charge balance condition of the resonant capacitor and the current sharing function of the coupled inductor to achieve whole LED current balancing without an additional controller. The proposed coupled inductor can integrate the current balancing function and the resonant inductor, so the power density can be increased by reducing the number of magnetic devices. A 40 W prototype is built to verify the validity of this LED driver, and the experimental results are successfully obtained.

Inductor Characteristics Analysis in High Power Interleaved Buck Converter

  • Yun, Chul;Yoon, Byungkeun;Kwon, Woohyen;Kim, Woohyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권1호
    • /
    • pp.47-52
    • /
    • 2017
  • Inductor in high power converter system increases production cost, volume and core loss proportional to the power. To decrease these disadvantages, this paper analyzed the characteristic of parallel-inductor and coupled-inductor in interleaved system with simulation. As a result, it is confirmed that two-phase interleaved non-coupled buck-converter has the best characteristic among three types converter.