• Title/Summary/Keyword: Power Generator

Search Result 3,837, Processing Time 0.03 seconds

Modeling and Simulation of Loss of Excitation of Hydro Generator Control System (수력 발전기 제어시스템의 계자상실 모델링과 시뮬레이션)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.2
    • /
    • pp.74-80
    • /
    • 2014
  • Generator protection device has to detects an internal fault conditions in generator and abnormal operating conditions must be due to the hazards. Loss of excitation may cause generator itself failure as well as serious operating problem in power system, and then requires an appropriate response of generator protection device. Details modeling of generator control system and analysis of transient states in generator are important for optimal operation in power plants. In addition, the fault simulation data are also used for testing the characteristics of IED. In this paper, the hydro generator control system using PSCAD/EMTDC, visual simulation for power systems, was modeled. The generator control system which is composed of generator, turbine, exciter, governor was implemented. The parameters of generator control system model were obtained from field power plant. Loss of excitation simulations were performed while varying the fixed load. Several signals analysis were also performed so as to analyze transients phenomena.

Output Characterization Analysis of Induction Generator using Test Data (시험 데이터를 이용한 유도발전기의 출력 특성 분석)

  • Kim, Jong-Gyeum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.1027-1032
    • /
    • 2013
  • Induction generator is used primarily in small hydroelectric power station less than 1000kW recently. Unlike the synchronous generator, induction generator produces electricity when it is rotated above synchronous speed. In this study, we calculated the parameters of the induction generator with test reports presented by the manufacturer and analyzed that how much the induction generator has produced power near the rated speed. If we can use the test data to calculate the parameters, it is possible the output characteristics analysis of the induction generator. As a result of analysis, we concluded that output of induction generator varies sensitively for small changes in rotational speed in the near synchronous speed.

Power Density Maximization of the Brushless DC Generator by Controlling the Optimal Current Waveform (최적 전류파형제어를 통한 브러시리스 DC 발전기의 출력밀도 최대화에 관한 연구)

  • 이형우
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.7
    • /
    • pp.430-436
    • /
    • 2004
  • This paper presents an advanced control technique for power density maximization of the Brushless DC (BLDC) generator by using the linear tracking method. In a generator of given rating, the weight and size of the system affect the fuel consumption directly. Therefore, power density is one of the most important issues in a stand-alone generator. BLDC generator has high power density in the machine point of view and additional increases of power density by control means can be expected. Conventional rectification methods cannot achieve the maximum power possible because of hon-optimal current waveforms. The optimal current waveform to maximize power density and minimize machine size and weight in a nonsinusoidal power supply system has been derived, incorporated in a control system, and verified by simulation and experimental work. A new simple algebraic method has been proposed to accomplish the proposed control without an FFT which is time consuming and complicated.

A study on the variation of power factor by connection of the induction generator to the distribution line (배전선로에 유도발전기 연결시 역률 변동에 관한 연구)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Kyung-Bae;Kim, Young-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1469-1470
    • /
    • 2015
  • Recently induction generator has been applied to many small hydro power plants. Induction generator needs a reactive power for magnetization. The reactive power of induction generator is being supplied from the supply side mostly. The use of induction generators in the power distribution grid can affect the power factor. The power factor of induction generator is fixed already during production. The power factor in the distribution system is due to the increase or decrease of the load rather than due to the induction generator. In this study, we analyzed how the power factor is changed according to the load increase or decrease in the distribution lines.

  • PDF

Design and Fabrication of a Thermoelectric Generator Based on BiTe Legs to power Wearable Device

  • Moon, S.E.;Kim, J.;Lee, S.M.;Lee, J.;Im, J.P.;Kim, J.H.;Im, S.Y.;Jeon, E.B.;Kwon, B.;Kim, H.;Kim, J.S.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1760-1763
    • /
    • 2018
  • To attain power generation with body heat, the thermal resistance matched design of the thermoelectric generator was the principal factor which was not critical in the case of thermoelectric generator for the waste heat generation. The dimension of thermoelectric legs and the number of thermoelectric leg-pairs dependent output power performances of the thermoelectric generator on the human wrist condition was simulated using 1-dimensional approximated heat flow equations with the temperature dependent material coefficients of the constituent materials and the dimension of the substrate. With the optimum thermoelectric generator design, thermoelectric generator modules were fabricated by using newly developed fabrication processes, which is mass production possible. The electrical properties and the output power characteristics of the fabricated thermoelectric modules were characterized by using a home-made test set-up. The output voltage of the designed thermoelectric generator were a few tens of millivolts and its output power was several hundreds of microwatts under the conditions at the human wrist. The measured output voltage and power of the fabricated thermoelectric generator were slightly lower than those of the designed thermoelectric generator due to several reasons.

The Evaluation of an Electric Hybrid Power System for the High Endurance Drone (장기체공 드론용 하이브리드 전기 추진시스템 성능 평가)

  • Gang, Byeong Gyu;Kim, Keun-Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.539-544
    • /
    • 2022
  • This research shows the test performance of a 6 kW-scale hybrid electric power system for the high endurance drone. The power system is composed of a two-stroke reciprocal engine, starter-generator and battery, and they are integrated as one power unit. The engine is designed to provide the house for holding the starter-generator at the end of a crankshaft in turn the engine and starter-generator can maintain the same speed during the operational period. In this way, the generated power is readily controlled by just manipulating an engine throttle movement. Moreover, the starter-generator can initiate an engine operation with an aid of battery power until the combustion process becomes stabilized. In consequence, integration mechanism between an engine and generator is simplified, which results in weight reduction achieved. The duty of back-up battery is to provide a starting power to generator via a system controller in addition to covering momentarily power shortage. Therefore, the electric power system is vindicated to provide 6 kW power through a ground test.

Application Study of Condition Monitoring Technology for Emergency Diesel Generator at Nuclear Power Plant (원자력발전소 비상디젤발전기 상태감시 기술 적용 연구)

  • Choi, K.H.;Park, J.H.;Park, J.E.;Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.53-58
    • /
    • 2009
  • The emergency diesel generator(EDG) of the nuclear power plant is designed to supply the power to the nuclear reactor on Station Black Out(SBO) condition. The operation reliability of onsite emergency diesel generator should be ensured by a conditioning monitoring system designed to monitor and analysis the condition of diesel generator. For this purpose, we have developing the technologies of condition monitoring for the wolsong unit 3&4 standby diesel generator including diesel engine performance. In this paper, technologies of condition monitoring for the wolsong standby diesel generator are described about three step. First is for selection of operating parameter for monitoring. Second is for technologies of online condition monitoring, Third is for monitoring of engine performance.

  • PDF

Model-Based Loss Minimization Control for Induction Generators - in Wind Power Generation Systems (모델 기반의 풍력발전용 유도발전기의 최소 손실 제어)

  • Abo-Khalil, Ahmed G.;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.7
    • /
    • pp.380-388
    • /
    • 2006
  • In this paper, a novel control algorithm to minimize the power loss of the induction generator for wind power generation system is presented. The proposed method is based on the flux level reduction, where the flux level is computed from the machine model for the optimum d-axis current of the generator. For the vector-controlled induction generator, the d-axis current controls the excitation level in order to minimize the generator loss while the q-axis current controls the generator torque, by which the speed of the induction generator is controlled according to the variation of the wind speed in order to produce the maximum output power. Wind turbine simulator has been implemented in laboratory to validate the theoretical development. The experimental results show that the loss minimization process is more effective at low wind speed and that the percent of power loss saving can approach to 25%. Experimental results are shown to verify the validity of the proposed scheme.

The research of vibration power generation to make effective use of ocean wave energy (파도에너지를 효율적으로 이용하기위한 파력진동발전기에 대한 연구)

  • Lee, Hong-Chan;Lee, Jae-Ho;Han, Ki-Bong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.75-75
    • /
    • 2011
  • This paper has been studied that ocean wave vibration power generator is composed of buoy and vibration generator to make effective use of ocean wave energy. We designed buoy to can occur resonance for dominant frequency with ocean wave. And then we fitted the natural frequency of vibration system with vibration power generator to buoy's natural frequency. And we can show that the amplitude of ocean wave up and down motion is decreased, on the other hand, the displacement of vibration system with vibration power generator is increased. Therefore, ocean wave vibration power generator which is proposed in this paper has merits not only securing its stability from surroundings but also producing more electronic power by using ocean wave energy.

  • PDF

Application of Fuzzy Algorithm with Learning Function to Nuclear Power Plant Steam Generator Level Control

  • Park, Gee-Yong-;Seong, Poong-Hyun;Lee, Jae-Young-
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1054-1057
    • /
    • 1993
  • A direct method of fuzzy inference and a fuzzy algorithm with learning function are applied to the steam generator level control of nuclear power plant. The fuzzy controller by use of direct inference can control the steam generator in the entire range of power level. There is a little long response time of fuzzy direct inference controller at low power level. The rule base of fuzzy controller with learning function is divided into two parts. One part of the rule base is provided to level control of steam generator at low power level (0%∼30% of full power). Response time of steam generator level control at low power level with this rule base is shown generator level control at low power level with this rule base is shown to be shorter than that of fuzzy controller with direct inference.

  • PDF