• Title/Summary/Keyword: Power Generation Prediction

Search Result 229, Processing Time 0.023 seconds

Comparison of Solar Power Generation Forecasting Performance in Daejeon and Busan Based on Preprocessing Methods and Artificial Intelligence Techniques: Using Meteorological Observation and Forecast Data (전처리 방법과 인공지능 모델 차이에 따른 대전과 부산의 태양광 발전량 예측성능 비교: 기상관측자료와 예보자료를 이용하여)

  • Chae-Yeon Shim;Gyeong-Min Baek;Hyun-Su Park;Jong-Yeon Park
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.177-185
    • /
    • 2024
  • As increasing global interest in renewable energy due to the ongoing climate crisis, there is a growing need for efficient technologies to manage such resources. This study focuses on the predictive skill of daily solar power generation using weather observation and forecast data. Meteorological data from the Korea Meteorological Administration and solar power generation data from the Korea Power Exchange were utilized for the period from January 2017 to May 2023, considering both inland (Daejeon) and coastal (Busan) regions. Temperature, wind speed, relative humidity, and precipitation were selected as relevant meteorological variables for solar power prediction. All data was preprocessed by removing their systematic components to use only their residuals and the residual of solar data were further processed with weighted adjustments for homoscedasticity. Four models, MLR (Multiple Linear Regression), RF (Random Forest), DNN (Deep Neural Network), and RNN (Recurrent Neural Network), were employed for solar power prediction and their performances were evaluated based on predicted values utilizing observed meteorological data (used as a reference), 1-day-ahead forecast data (referred to as fore1), and 2-day-ahead forecast data (fore2). DNN-based prediction model exhibits superior performance in both regions, with RNN performing the least effectively. However, MLR and RF demonstrate competitive performance comparable to DNN. The disparities in the performance of the four different models are less pronounced than anticipated, underscoring the pivotal role of fitting models using residuals. This emphasizes that the utilized preprocessing approach, specifically leveraging residuals, is poised to play a crucial role in the future of solar power generation forecasting.

Wind Power Interval Prediction Based on Improved PSO and BP Neural Network

  • Wang, Jidong;Fang, Kaijie;Pang, Wenjie;Sun, Jiawen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.989-995
    • /
    • 2017
  • As is known to all that the output of wind power generation has a character of randomness and volatility because of the influence of natural environment conditions. At present, the research of wind power prediction mainly focuses on point forecasting, which can hardly describe its uncertainty, leading to the fact that its application in practice is low. In this paper, a wind power range prediction model based on the multiple output property of BP neural network is built, and the optimization criterion considering the information of predicted intervals is proposed. Then, improved Particle Swarm Optimization (PSO) algorithm is used to optimize the model. The simulation results of a practical example show that the proposed wind power range prediction model can effectively forecast the output power interval, and provide power grid dispatcher with decision.

Learning Wind Speed Forecast Model based on Numeric Prediction Algorithm (수치 예측 알고리즘 기반의 풍속 예보 모델 학습)

  • Kim, Se-Young;Kim, Jeong-Min;Ryu, Kwang-Ryel
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.3
    • /
    • pp.19-27
    • /
    • 2015
  • Technologies of wind power generation for development of alternative energy technology have been accumulated over the past 20 years. Wind power generation is environmentally friendly and economical because it uses the wind blowing in nature as energy resource. In order to operate wind power generation efficiently, it is necessary to accurately predict wind speed changing every moment in nature. It is important not only averagely how well to predict wind speed but also to minimize the largest absolute error between real value and prediction value of wind speed. In terms of generation operating plan, minimizing the largest absolute error plays an important role for building flexible generation operating plan because the difference between predicting power and real power causes economic loss. In this paper, we propose a method of wind speed prediction using numeric prediction algorithm-based wind speed forecast model made to analyze the wind speed forecast given by the Meteorological Administration and pattern value for considering seasonal property of wind speed as well as changing trend of past wind speed. The wind speed forecast given by the Meteorological Administration is the forecast in respect to comparatively wide area including wind generation farm. But it contributes considerably to make accuracy of wind speed prediction high. Also, the experimental results demonstrate that as the rate of wind is analyzed in more detail, the greater accuracy will be obtained.

Comparative Analysis of Solar Power Generation Prediction AI Model DNN-RNN (태양광 발전량 예측 인공지능 DNN-RNN 모델 비교분석)

  • Hong, Jeong-Jo;Oh, Yong-Sun
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.3
    • /
    • pp.55-61
    • /
    • 2022
  • In order to reduce greenhouse gases, the main culprit of global warming, the United Nations signed the Climate Change Convention in 1992. Korea is also pursuing a policy to expand the supply of renewable energy to reduce greenhouse gas emissions. The expansion of renewable energy development using solar power led to the expansion of wind power and solar power generation. The expansion of renewable energy development, which is greatly affected by weather conditions, is creating difficulties in managing the supply and demand of the power system. To solve this problem, the power brokerage market was introduced. Therefore, in order to participate in the power brokerage market, it is necessary to predict the amount of power generation. In this paper, the prediction system was used to analyze the Yonchuk solar power plant. As a result of applying solar insolation from on-site (Model 1) and the Korea Meteorological Administration (Model 2), it was confirmed that accuracy of Model 2 was 3% higher. As a result of comparative analysis of the DNN and RNN models, it was confirmed that the prediction accuracy of the DNN model improved by 1.72%.

Implementation of machine learning-based prediction model for solar power generation (빅데이터를 활용한 머신러닝 기반 태양에너지 발전량 예측 모델)

  • Jong-Min Kim;Joon-hyung Lee
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.99-104
    • /
    • 2022
  • This study provided a prediction model for solar energy production in Yeongam province, Jeollanam-do. The model was derived from the correlation between climate changes and solar power production in Yeongam province, Jeollanam-do, and presented a prediction of solar power generation through the regression analysis of 6 parameters related to weather and solar power generation. The data used in this study were the weather and photovoltaic production data from January in 2016 to December in 2019 provided by public data. Based on the data, the machine learning technique was used to analyzed the correlation between weather change and solar energy production and derived to the prediction model. The model showed that the photovoltaic production can be categorized by the three-stage production index and will be used as an important barometer in the agriculture activity and the use of photovoltaic electricity.

Analysis on Electrical Characteristics of PV Cells considering Ambient Temperature and Irradiance Level (주변온도와 일사량을 고려한 PV Cell의 전기적 특성 분석)

  • Park, Hyeonah;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.481-485
    • /
    • 2016
  • When analyzing economic feasibility for installing a PV generation plant at a certain location, the prediction of possible annual power production at the site using the target PV panels should be conducted on the basis of the local weather data provided by a local weather forecasting office. In addition, the prediction of PV generating power under certain weather conditions is useful for fault diagnosis and performance evaluation of PV generation plants during actual operation. This study analyzes PV cell characteristics according to a variety of weather conditions, including ambient temperature and irradiance level. From the analysis and simulation results, this work establishes a proper model that can predict the output characteristics of PV cells under changes in weather conditions.

A Study on Prediction and Adjustment of Disputes Amount of Power Generated by the PV System by the Peripheral Structure Shadow (주변 구조물의 일조방해로 발생한 음영에 의한 태양광 발전 시스템 발전량 예측 및 분쟁 조정(안)에 대한 연구)

  • Oh, Min-Seok;Kim, Gi-Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.2
    • /
    • pp.11-22
    • /
    • 2019
  • The first case of the Central Environmental Dispute Mediation Committee, which recently decided to repay the builder for damaging the solar power plant due to the obstruction of the sunshine of new buildings, came out. Even if the Respondent complies with the provisions of the Building Act, the decision of the Complainant can be considered to have been made in light of the fact that the applicant's power plant has suffered from sunlight damage. However, since the extent of the damage may differ depending on the weather, the decision is reserved, and there is room for additional disputes on a regular basis because the loss of power generation to be continuously generated is not reflected in the future. Therefore, in this study, we try to find the direction of dispute adjustment by summarizing the issues related to the generation of power generation due to the influence of shading through the analysis of the case of dispute related to sunlight related to the PV system.

Prediction of Photovoltaic Power Generation Based on Machine Learning Considering the Influence of Particulate Matter (미세먼지의 영향을 고려한 머신러닝 기반 태양광 발전량 예측)

  • Sung, Sangkyung;Cho, Youngsang
    • Environmental and Resource Economics Review
    • /
    • v.28 no.4
    • /
    • pp.467-495
    • /
    • 2019
  • Uncertainty of renewable energy such as photovoltaic(PV) power is detrimental to the flexibility of the power system. Therefore, precise prediction of PV power generation is important to make the power system stable. The purpose of this study is to forecast PV power generation using meteorological data including particulate matter(PM). In this study, PV power generation is predicted by support vector machine using RBF kernel function based on machine learning. Comparing the forecasting performances by including or excluding PM variable in predictor variables, we find that the forecasting model considering PM is better. Forecasting models considering PM variable show error reduction of 1.43%, 3.60%, and 3.88% in forecasting power generation between 6am~8pm, between 12pm~2pm, and at 1pm, respectively. Especially, the accuracy of the forecasting model including PM variable is increased in daytime when PV power generation is high.

Through load prediction and solar power generation prediction ESS operation plan(Guide-line) study (부하예측 및 태양광 발전예측을 통한 ESS 운영방안(Guide-line) 연구)

  • Lee, Gi-Hyun;Kwak, Gyung-il;Chae, U-ri;KO, Jin-Deuk;Lee, Joo-Yeoun
    • Journal of Digital Convergence
    • /
    • v.18 no.12
    • /
    • pp.267-278
    • /
    • 2020
  • ESS is an essential requirement for resolving power shortages and power demand management and promoting renewable energy at a time when the energy paradigm changes. In this paper, we propose a cost-effective ESS Peak-Shaving operation plan through load and solar power generation forecast. For the ESS operation plan, electric load and solar power generation were predicted through RMS, which is a statistical measure, and a target load reduction guideline for one hour was set through the predicted electric load and solar power generation amount. The load and solar power generation amount from May 6th to 10th, 2019 was predicted by simulation of load and photovoltaic power generation using real data of the target customer for one year, and an hourly guideline was set. The average error rate for predicting load was 7.12%, and the average error rate for predicting solar power generation amount was 10.57%. Through the ESS operation plan, it was confirmed that the hourly guide-line suggested in this paper contributed to the peak-shaving maximization of customers.Through the results of this paper, it is expected that future energy problems can be reduced by minimizing environmental problems caused by fossil energy in connection with solar power and utilizing new and renewable energy to the maximum.

Control strategies of energy storage limiting intermittent output of solar power generation: Planning and evaluation for participation in electricity market

  • Sewan Heo;Jinsoo Han;Wan-Ki Park
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.636-649
    • /
    • 2023
  • Renewable energy generation cannot be consistently predicted or controlled. Therefore, it is currently not widely used in the electricity market, which requires dependable production. In this study, reliability- and variance-based controls of energy storage strategies are proposed to utilize renewable energy as a steady contributor to the electricity market. For reliability-based control, photovoltaic (PV) generation is assumed to be registered in the power generation plan. PV generation yields a reliable output using energy storage units to compensate for PV prediction errors. We also propose a runtime state-ofcharge management method for sustainable operations. With variance-based controls, changes in rapid power generation are limited through ramp rate control. This study introduces new reliability and variance indices as indicators for evaluating these strategies. The reliability index quantifies the degree to which the actual generation realizes the plan, and the variance index quantifies the degree of power change. The two strategies are verified based on simulations and experiments. The reliability index improved by 3.1 times on average over 21 days at a real power plant.