• Title/Summary/Keyword: Power Factor Improvement Circuit

Search Result 64, Processing Time 0.032 seconds

Steady state Operatong Characteristics (PWM Buck-Boost AC-AC 컨버터의 정상상태 동작특성)

  • 최남섭
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.430-434
    • /
    • 2002
  • Recently, lot of researchers pay attention to custom power equipments for power quality improvement, especially, voltage stabilization equipment using PWM AC-AC converter. In this paper, voltage regulation system with PWM Buck-Boost AC-AC converter is proposed and then the system is modelled and analyzed by using of Circuit DQ transformation whereby steady state characteristics such as equations for voltage gain and power factor are obtained. The equations become guide line for system design by showing the effect on system operations. Finally, some experiment will show validity of analysis.

  • PDF

Design and Making of PWM Control-based AC-DC Converter with Full-Bridge Rectifier (전파 정류기를 가지는 PWM 제어 기반의 AC-DC 컨버터 설계 및 제작)

  • Bum-Soo Choi;Sang-Hyeon Kim;Dong-Ki Woo;Min-Ho Lee;Yun-Seok Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.617-624
    • /
    • 2023
  • Recently, miniaturization and low power consumption of electronic products and improved efficiency and power factor improvement have become a matter of great interest. In this paper, an AC-DC converter based on PWM control was designed and made. The AC-DC converter is designed with a structure in which one rectifier circuit and one output voltage control circuit are connected in series. The rectifier circuit is a diode-based single phase full-wave current circuit and the output voltage control circuit is a DC-DC conversion circuit based on PWM control. Arduino was used as the main control device for PWM control, and LCD was configured at the output stage so that the control result could be checked. The error between the output voltage displayed on the oscilloscope and LCD and the target output voltage was confirmed through repeated experiments with the test circuit, and the validity of the proposed design methodology was confirmed by showing an error rate of about 5% based on the oscilloscope measurement value.

A Study on Current Waveform Control and Performance Improvement for Inverter Arc Welding Machine (인버터 아크 용접기의 파형제어기법 및 성능향상에 관한 연구)

  • 채영민;고재석;김진욱;이승요;최해룡;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.128-137
    • /
    • 1999
  • Recently the pelionnance of CO2 arc welding machine has been advanced significantly through the adoption of i invelter circuit topology. which made it possible to improve welding perfonnances such as spatter generation and bead s state. But the conventional inverter arc welding machine generates constant output voltage which cause much spatter g generation dUling short-circuit and arc start time because it is unable to control output current instantaneously. So this p paper representes wavefCnm controlled inverter arc welding machine which control the wavefonn of welding current and t thus to suppress the spatter generation. And the system designed in this paper is the digital controller using single chip m microprocessor of 80C196KC. As a result of perfonnance test for this system, the spatter generation is reduced and s shOlt-circuit time period is stabilized compared to conventional one. And more by using switched mode rectifier for A AC/DC power convelter. unity power factor is maintained and low order halmonic spectrum is supressed.

  • PDF

Implementation and Evaluation of Interleaved Boundary Conduction Mode Boost PFC Converter with Wide Band-Gap Switching Devices

  • Jang, Jinhaeng;Pidaparthy, Syam Kumar;Choi, Byungcho
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.985-996
    • /
    • 2018
  • The implementation and performance evaluation of an interleaved boundary conduction mode (BCM) boost power factor correction (PFC) converter is presented in this paper by employing three wide band-gap switching devices: a super junction silicon (Si) MOSFET, a silicon carbide (SiC) MOSFET and a gallium nitride (GaN) high electron mobility transistor (HEMT). The practical considerations for adopting wide band-gap switching devices to BCM boost PFC converters are also addressed. These considerations include the gate drive circuit design and the PCB layout technique for the reliable and efficient operation of a GaN HEMT. In this paper it will be shown that the GaN HEMT exhibits the superior switching characteristics and pronounces its merits at high-frequency operations. The efficiency improvement with the GaN HEMT and its application potentials for high power density/low profile BCM boost PFC converters are demonstrated.

Development of Macro-Porous Silicon Based Dye-Sensitized Solar Cells with Improved Light Trapping

  • Aliaghayee, Mehdi;Fard, Hassan Ghafoori;Zandi, Ashkan
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.218-227
    • /
    • 2016
  • The light harvesting efficiency is counted as an important factor in the power conversion efficiency of DSSCs. There are two measures to improve this parameter, including enhancing the dye-loading capacity and increasing the light trapping in the photoanode structure. In this paper, these tasks are addressed by introducing a macro-porous silicon (PSi) substrate as photoanode. The effects of the novel photoanode structure on the DSSC performance have been investigated by using energy dispersive X-ray spectroscopy, photocurrent-voltage, UV-visible spectroscopy, reflectance spectroscopy, and electrochemical impedance spectroscopy measurements. The results indicated that bigger porosity percentage of the PSi structure improved the both anti-reflective/light-trapping and dye-loading capacity properties. PSi based DSSCs own higher power conversion efficiency due to its remarkable higher photocurrent, open circuit voltage, and fill factor. Percent porosity of 64%, PSi(III), resulted in nearly 50 percent increment in power conversion efficiency compared with conventional DSSC. This paper showed that PSi can be a good candidate for the improvement of light harvesting efficiency in DSSCs. Furthermore, this study can be considered a valuable reference for more investigations in the design of multifunctional devices which will profit from integrated on-chip solar power.

A Study on the Driven and Analysis of T5 Application Circuits using a Characteristics of Piezoelectric Transformer (압전 변압기 특성을 이용한 T5급 응용회로 동작 및 해석에 관한 연구)

  • Lee, Hae-Chun;Lee, Chang-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.113-118
    • /
    • 2010
  • In This Paper, at the PSPICE model is presented by Piezoelectric Transformer and CCFL and equivalent circuit of fluorescent light. Highly effective fluorescent light release for next generation is developed for 35W supremacy model three wave length T5 fluorescent lamps. Lighting a candle experiment of T5 fluorescent lamps is carried out by employing Piezoelectric Transformer power-factor improvement circuit and inverter. PLL method is used for supplying a correct frequency of Piezoelectric Transformer operating.

A study on the power factor improvement of the Boost Forward Converter (BF 컨버터의 역률 개선에 관한 연구)

  • 임승하
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.56-63
    • /
    • 1999
  • In this paper, we realize the active PFC(Power Factor Correction) system of BF (Boost Forward) converter with PWM-PFM control technique to control DC output voltage, and to control the input current with sinusoidal wave synchronized by the converter and inverter using power switching element, FET and IGBT. The control circuit of the suggested Boost converter is implemented with a microprocessor 80C196. After making the ratio of output voltage to current as 50V/1A and the duty ratio greater than 0.5. When input voltage is 30V and boost inductance is 1.1mH. We control the voltage changing rate according to the variation of load resistance using a PWM-PFM control technique. And finally we prove experimentally. PF can be improved up to 0.96 using the current shaping technique.

  • PDF

Analysis and Design of a DC-Side Symmetrical Class-D ZCS Rectifier for the PFC of Lighting Applications

  • Ekkaravarodome, Chainarin;Thounthong, Phatiphat;Jirasereeamornkul, Kamon;Higuchi, Kohji
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.621-633
    • /
    • 2015
  • This paper proposes the analysis and design of a DC-side symmetrical zero-current-switching (ZCS) Class-D current-source driven resonant rectifier to improve the low power-factor and high line current harmonic distortion of lighting applications. An analysis of the junction capacitance effect of Class-D ZCS rectifier diodes, which has a significant impact on line current harmonic distortion, is discussed in this paper. The design procedure is based on the principle of the symmetrical Class-D ZCS rectifier, which ensures more accurate results and provides a more systematic and feasible analysis methodology. Improvement in the power quality is achieved by using the output characteristics of the DC-side Class-D ZCS rectifier, which is inserted between the front-end bridge-rectifier and the bulk-filter capacitor. By using this symmetrical topology, the conduction angle of the bridge-rectifier diode current is increased and the low line harmonic distortion and power-factor near unity were naturally achieved. The peak and ripple values of the line current are also reduced, which allows for a reduced filter-inductor volume of the electromagnetic interference (EMI) filter. In addition, low-cost standard-recovery diodes can be employed as a bridge-rectifier. The validity of the theoretical analysis is confirmed by simulation and experimental results.

A Study on the Performance Improvement for Flexible PCDTBT : PC71BM Organic Thin Film Solar Cell by Ozone Surface Treatment of ITO Electrode (ITO 전극의 오존 표면처리에 의한 플렉시블 PCDTBT : PC71BM 유기박막 태양전지의 성능 개선에 관한 연구)

  • No, Im-Jun;Lim, Young-Taek;Shin, Paik-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.11
    • /
    • pp.104-108
    • /
    • 2012
  • Flexible organic thin film solar cell device with Bulk Hetero-Junction (BHJ) structure was fabricated with blended conjugated polymer of PCDTBT : $PC_{71}BM$ as active layer. Surface of ITO anode for the organic solar cell device was treated with ozone. The organic solar cell device with bare ITO showed short circuit current density ($J_{sc}$) of $8.2mA/cm^2$, open-circuit voltage ($V_{oc}$) of 0.73V, fill factor (FF) of 0.36, and power conversion efficiency (PCE) of 2.16%, respectively. The organic solar cell device with ozone treated ITO anode revealed distinctively improved performance parameters:$J_{sc}$ of $9.8mA/cm^2$, $V_{oc}$ of 0.82V, FF of 0.43, PCE(${\eta}$) of 3.42%.

Development of Ozone Generating System Applying Forward Type High Voltage Pulse Power Supply (Forward형 고압펄스 전원장치를 적용한 오존발생 시스템 의 개발)

  • 김동희;원재선;김경식;이광식;정도영;오승훈
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.335-342
    • /
    • 2003
  • This paper presents a forward type high voltage pulse power supply for high voltage small current, which can be designed as a simple circuit configuration and managed easily using Power-MOSFET in the view of commercialization. According to the switching frequency, coupling factor(k) and duty ratio(D), the Principle of basic operation and the characteristics of the proposed pulse power supply are estimated. Simulation results have demonstrated the feasibility of the proposed pulse power supply. Also experimental results are presented to verify theoretical discussion with a lamp type ozonizer as a load. For studying the application at the part of environment of water, When ozonizer gas reacts with a colon bacillus, the sterilization characteristics of a colon bacillus according to the ozone concentration and response time have been investigated. This proposed pulse power supply will be able to be practically used as a pulse power supply in various environment improvement facilities like sterilization of colon bacillus, deodorization, and Nox gas elimination.