• Title/Summary/Keyword: Power Consumption Information

Search Result 2,468, Processing Time 0.029 seconds

Digital Sequence CPLD Technology Mapping Algorithm

  • Youn, Choong-Mo
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.131-135
    • /
    • 2007
  • In this paper, The proposed algorithm consists of three steps. In the first step, TD(Transition Density) calculation has to be performed. a CLB-based CPLD low-power technology mapping algorithm considered a Trade-off is proposed. To perform low-power technology mapping for CPLDs, a given Boolean network has to be represented in a DAG. Total power consumption is obtained by calculating the switching activity of each node in a DAG. In the second step, the feasible clusters are generated by considering the following conditions: the number of inputs and outputs, the number of OR terms for CLB within a CPLD. The common node cluster merging method, the node separation method, and the node duplication method are used to produce the feasible clusters. In the final step, low-power technology mapping based on the CLBs packs the feasible clusters. The proposed algorithm is examined using SIS benchmarks. When the number of OR terms is five, the experiment results show that power consumption is reduced by 30.73% compared with TEMPLA, and by 17.11 % compared with PLA mapping.

Low-Power Motion Estimator Architecture for Deep Sub-Micron Multimedia SoC (Deep Submicron 공정의 멀티미디어 SoC를 위한 저전력 움직임 추정기 아키텍쳐)

  • 연규성;전치훈;황태진;이성수;위재경
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.10
    • /
    • pp.95-104
    • /
    • 2004
  • This paper propose a motion estimator architecture to reduce the power consumption of the most-power-consuming motion estimation method when designing multimedia SoC with deep submicron technologies below 0.13${\mu}{\textrm}{m}$. The proposed architecture considers both dynamic and static power consumption so that it is suitable for large leakage process technologies, while conventional architectures consider only dynamic power consumption. Consequently, it is suitable for mobile information terminals such as mobile videophone where efficient power management is essential. It exploits full search method for simple hardware implementation. It also exploits early break-off method to reduce dynamic power consumption. To reduce static power consumption, megablock shutdown method considering power line noise is also employed. To evaluate the proposed architecture when applied multimedia SoC, system-level control flow and low-power control algorithm are developed and the power consumption was calculated based on thor From the simulation results, power consumption was reduced to about 60%. Considering the line width reduction and increased leakage current due to heat dissipation in chip core, the proposed architecture shows steady power reduction while it goes worse in conventional architectures.

Dynamic Slew-Rate Control for High Uniformity and Low Power in LCD Driver ICs

  • Choi, Sung-Pil;Lee, Mira;Jin, Jahoon;Kwon, Kee-Won;Chun, Jung-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.688-696
    • /
    • 2014
  • A slew-rate control method of LCD driver ICs is introduced to increase uniformity between adjacent driver ICs and reduce power consumption. The slew rate of every voltage follower is calibrated by a feedback algorithm during the non-displaying period. Under normal operation mode, the slew rate is dynamically controlled for improving power efficiency. Experimental results show that the power consumption is reduced by 16% with a white pattern and by 10% with a black pattern, and display defects are successfully eliminated.

Power Saving Scheme by Distinguishing Traffic Patterns for Event-Driven IoT Applications

  • Luan, Shenji;Bao, Jianrong;Liu, Chao;Li, Jie;Zhu, Deqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1123-1140
    • /
    • 2019
  • Many Internet of Things (IoT) applications involving bursty traffic have emerged recently with event detection. A power management scheme qualified for uplink bursty traffic (PM-UBT) is proposed by distinguishing between bursty and general uplink traffic patterns in the IEEE 802.11 standard to balance energy consumption and uplink latency, especially for stations with limited power and constrained buffer size. The proposed PM-UBT allows a station to transmit an uplink bursty frame immediately regardless of the state. Only when the sleep timer expires can the station send uplink general traffic and receive all downlink frames from the access point. The optimization problem (OP) for PM-UBT is power consumption minimization under a constrained buffer size at the station. This OP can be solved effectively by the bisection method, which demonstrates a performance similar to that of exhaustive search but with less computational complexity. Simulation results show that when the frame arrival rate in a station is between 5 and 100 frame/second, PM-UBT can save approximately 5 mW to 30 mW of power compared with an existing power management scheme. Therefore, the proposed power management strategy can be used efficiently for delay-intolerant uplink traffic in event-driven IoT applications, such as health status monitoring and environmental surveillance.

Minimizing the power consumption of ZigBee RF4CE Certified Platform

  • Jung, Taek-Soo;Kim, Jung-Won
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.287-292
    • /
    • 2011
  • The RF4Control stack is used with microcontrollers and IEEE(R) 802.15.4 transceivers. This paper explains the setup and power consumption measurements for the transceiver based remote controller and target node. It is assumed the reader of this paper has knowledge about RF4CE. The current consumption measurements are made using the ZigBee Platform included with the RF4Control stack. he current consumption measurements are presented, and battery life time is calculated for an remote controller. Note that the results presented in this paper are intended as a guideline only. A variety of factors will influence the battery life calculation and final measurements and calculations should be performed on ZigBee RF4CE Certified Platform.

Multiplexing scheme for forward signaling channels in wireless cellular networks (이동통신망의 전향 신호 채널을 위한 다중화 방식)

  • 최천원
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.65-75
    • /
    • 1998
  • We consider connection-oriented wireless cellular networks such as the second generation wireless cellular networks and wirelss ATM networks. In these networks, a separate forward signaling channel is provided for the transmission of paging and channel allocation packets. When a call destined to a user is requested, all the base stations in the user's current location area broadcast the corresponding paging packet across forward signaling channels. By slot mode operation and paging group allocation for fusers in a location area, we can reduce relative power consumption level at battery-operated terminals. However, a sthe number of paging groups is increased for lowering relative power consumption level, a paging packet experiences higher delay to access the forward signaling channel. For the pre-negotiated quality-of-service level, paging packet delay level must be limited. In this paper, we consider static and dynamic multiplexing schemes for paging packets, and develop an analytical method for calculating paging packet delay and relative power consumption levels. Using this analytial method, we investigate the effect of network parameters on the paging packet delay and relative power consumption levels.

  • PDF

Game Theory-based Bi-Level Pricing Scheme for Smart Grid Scheduling Control Algorithm

  • Park, Youngjae;Kim, Sungwook
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.484-492
    • /
    • 2016
  • Smart grid (SG) technology is now elevating the conventional power grid system to one that functions more cooperatively, responsively, and economically. When applied in an SG the demand side management (DSM) technique can improve its reliability by dynamically changing electricity consumption or rescheduling it. In this paper, we propose a new SG scheduling scheme that uses the DSM technique. To achieve effective SG management, we adopt a mixed pricing strategy based on the Rubinstein-Stahl bargaining game and a repeated game model. The proposed game-based pricing strategy provides energy routing for effective energy sharing and allows consumers to make informed decisions regarding their power consumption. Our approach can encourage consumers to schedule their power consumption profiles independently while minimizing their payment and the peak-to-average ratio (PAR). Through a simulation study, it is demonstrated that the proposed scheme can obtain a better performance than other existing schemes in terms of power consumption, price, average payment, etc.

An analysis of the End-User electric power consumption trends using the load curve during international conflict (수용가 부하곡선을 일용한 국제분쟁시 전력사용 행태분석)

  • Son Hak Sig;Kim In Su;Park Yong Uk;Im Sang Kug;Kim Jae Chul
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.165-167
    • /
    • 2004
  • End-user electric power consumption trends shows various load curves dependant on industry, contract, season, day and time. Analysis of end-user electric power consumption trends has a key role to efficiently meet electricity demand. There are several factors of change in electricity demand such as the change of weather, international conflict, and industrial trends during summer. This paper has analyzed the analysis the end-user electric power consumption trends using the load curve during international conflict. We observed that international conflict decreased electric demand by $5.4\%$. This increase is not significant, and therefore we conclude that the international conflict has not greatly affected Korea's electricity demands. This paper provides useful information so as to mon: efficiently perform demand side management.

  • PDF

Packet Discrimination Method Using Artificial Frequency Offsets for Low Decoding Power Consumption in Heterogeneous Cooperative Communication Systems (이기종 협력 통신시스템에서 디코딩 전력소모 감소를 위한 인위적인 주파수 오프셋을 이용한 패킷 구별 기법)

  • Chae, Seungyeob;Yeo, Gyuhak;Rim, Minjoong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.7
    • /
    • pp.372-379
    • /
    • 2014
  • When a hand-held device with limited battery transmits and receives data using short-range wireless communication systems, such as WLAN(Wireless Local Area Network) or high speed WPAN(Wireless Personal Area Network), instead of mobile communication systems, the device is able to reduce the power consumption due to the reduced transmission distance. However, if there are many WLAN or high speed WPAN systems around the device, non-negligible power may be consumed by receiving and decoding the packets which have nothing to do with the device. In this paper, we propose a scheme reducing the power consumption by including physical-layer ID in WLAN or WPAN packets and avoiding unnecessary packet receptions. Also, we describe a method to determine the optimum number of physical-layer IDs.

Hourly Steel Industry Energy Consumption Prediction Using Machine Learning Algorithms

  • Sathishkumar, VE;Lee, Myeong-Bae;Lim, Jong-Hyun;Shin, Chang-Sun;Park, Chang-Woo;Cho, Yong Yun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.585-588
    • /
    • 2019
  • Predictions of Energy Consumption for Industries gain an important place in energy management and control system, as there are dynamic and seasonal changes in the demand and supply of energy. This paper presents and discusses the predictive models for energy consumption of the steel industry. Data used includes lagging and leading current reactive power, lagging and leading current power factor, carbon dioxide (tCO2) emission and load type. In the test set, four statistical models are trained and evaluated: (a) Linear regression (LR), (b) Support Vector Machine with radial kernel (SVM RBF), (c) Gradient Boosting Machine (GBM), (d) random forest (RF). Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) are used to measure the prediction efficiency of regression designs. When using all the predictors, the best model RF can provide RMSE value 7.33 in the test set.