• Title/Summary/Keyword: Power Circuit Design

Search Result 2,264, Processing Time 0.027 seconds

A study on the Maximum Power Point Tracking Control System of Wind Power Generation (풍력발전의 최대전력점 추종제어 방법에 관한 연구)

  • Ko, Seok-Cheol;Lee, Jae;Lim, Sung-Hun;Kang, Hyeong-Gon;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.153-156
    • /
    • 2001
  • Maximum Power Point Tracking(MPPT) Is used in wind power generation systems to maximize wind power turbin output power, irrespective of wind speed conditions and of the load electrical characteristics. In this paper we do the equivalent modeling the mechanical energy of wind power turbine according to wind speed into the synchronous generator. We analyse the equivalent modeling output part of rectifier into DC/DC converter input part theoretically. We design a control algorithm for variable voltage according to wind speed intensity and density so that load voltage of chopper is controlled steadily using the maximum power point tracking(MPPT) control method. We analyse a battery charging characteristics and a charging circuit for power storage enabling the supply of stable power to the load. We design a system and do the modeling of it analytically so that it supplies a stable power to the load by constructing a DC-AC inverter point. Also we design a charging circuit usable in actual wind power generation system of 30kW and confirm its validity.

  • PDF

Design and implementation of thyristor chopper circuit for D.C series motor control (직류 직권 전동기 제어를 위한 싸이리스터 쵸퍼회러의 설계및 시작)

  • 이윤종;백수현;이성백
    • 전기의세계
    • /
    • v.28 no.9
    • /
    • pp.51-59
    • /
    • 1979
  • The forming and design method of D.C thyristor chopper circuit for DC Series motor control is suggested, ard the computation method of thyristor commutaing element's, value which makes it all the more important, is possible. Also the trigger circuit was dealt with. In this paper, in order to control the duty cycle, the duty time is kept on constancy and variable chopping frequency was adopted. By above mentioned circuit design method, the D.C thyristor chopper circuit was implemented and tested. In this circuit, the result of D.C motor control was good and reliable. The relation between the $K_{d}$ and the ratio of input-output current, or the characteristic of speed was varied lineary at the range 0.1 ~ 0.9 of duty cycle. This confirms the fact that D.C to D.C power conversion which is the merit of chopper control is operated most likely a transformer.ormer.

  • PDF

A Novel Soft-Switching Two-Switch Flyback Converter with a Wide Operating Range and Regenerative Clamping

  • Kim, Marn-Go;Jung, Young-Seok
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.772-780
    • /
    • 2009
  • A novel soft-switching two-switch flyback converter is proposed in this paper. This converter is composed of two active power switches, a flyback transformer, a blocking diode, and two passive regenerative clamping circuits. The proposed converter has the advantages of a low cost circuit configuration, a simple control scheme, a high efficiency, and a wide operating range. The circuit topology, analysis, design considerations, and experimental results of the new flyback converter are presented.

A Study on Characteristic Analysis of Current Fed High Frequency Resonant Inverter for Wax-Sealing (Wax-Sealing용 전류형 고주파 공진 인버터의 특성해석에 관한 연구)

  • Kim, Dong-Hui;Won, Jae-Seon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.11
    • /
    • pp.568-574
    • /
    • 2001
  • This paper describes a current fed high frequency resonant inverter can be used as the power supply for wax-sealing. This circuit configuration is composed of conventional two unit inverter of single ended current find type in parallel. The proposed inverter can realize ZVS operation by using resonant capacitor to ZVS capacitor and has merits not only reduction of switch current distribution but also extension of load range in comparison with the conventional single-ended current fed high frequency resonant inverter. This analysis of proposed circuit uses normalized parameter and characteristic estimation which is needed in each step before design is generally described according to normalized frequency($\mu$), normalized resistance(λ) and parameters. On the basis of characteristic values, a method of the circuit design is presented. Also, the theoretical analysis is proved through experiment and this proposed circuit shows that it can be practically used as the power supply system for wax-sealing and DC-DC converter.

  • PDF

Interrupting Test of Molded Case Circuit Breaker with Strong Driving Magnetic Force (강자계 구동형 460V/225A/50kA 배선용 차단기 대전력 차단성능평가)

  • Choi, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.36-38
    • /
    • 2002
  • Low voltage circuit breakers which interrupt rapidly and raise the reliability of power supply are widly used in power distribution systems. In the paper, it was investigated how much Interrupting capability was improved by correcting the shape of the contact system in molded case circuit breaker(below MCCB), Prior to the interrupting testing, it was necessary for the optimum design to analyze magnetic forces on the contact system, generated by current and flux density. This paper presents both our compuational analysis and test results contact system in MCCB.

  • PDF

Machine learning-based design automation of CMOS analog circuits using SCA-mGWO algorithm

  • Vijaya Babu, E;Syamala, Y
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.837-848
    • /
    • 2022
  • Analog circuit design is comparatively more complex than its digital counterpart due to its nonlinearity and low level of abstraction. This study proposes a novel low-level hybrid of the sine-cosine algorithm (SCA) and modified grey-wolf optimization (mGWO) algorithm for machine learning-based design automation of CMOS analog circuits using an all-CMOS voltage reference circuit in 40-nm standard process. The optimization algorithm's efficiency is further tested using classical functions, showing that it outperforms other competing algorithms. The objective of the optimization is to minimize the variation and power usage, while satisfying all the design limitations. Through the interchange of scripts for information exchange between two environments, the SCA-mGWO algorithm is implemented and simultaneously simulated. The results show the robustness of analog circuit design generated using the SCA-mGWO algorithm, over various corners, resulting in a percentage variation of 0.85%. Monte Carlo analysis is also performed on the presented analog circuit for output voltage and percentage variation resulting in significantly low mean and standard deviation.

An Antenna-Integrated Oscillator Design Providing Convenient Control over the Operating Frequency and Output Power (동작주파수 및 출력파워 조절이 용이한 신호생성용 안테나 설계)

  • Lee, Dong-Ho;Lee, Jong-In;Kim, Mun-Il
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.1
    • /
    • pp.54-58
    • /
    • 2006
  • A new design for easily controlling operating frequency of an antenna-integrated planar oscillator is introduced. The oscillator circuit of a broadband negative-resistance active part and a passive load including a patch antenna. The patch resonance is used for determining the oscillation frequency. This design reduces the possibility of mismatch between antenna radiation and oscillation frequencies. To achieve optimum output power, load-pull simulation for the negative-resistance circuit is used. The load-pull simulation shows the feed point and the delay of feed line can affect the oscillation power. Two negative-resistance circuits capable of supporting oscillation over full C-band and X-band are fabricated. The oscillation frequency, output power and phase noise for different patch antennas are measured.

  • PDF

Design of an power transfer breaker by Taguchi method (다구찌 법을 이용한 전력전환차단기의 설계)

  • Kim, Kyung-Sun;Kim, Kwon-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.810-814
    • /
    • 2001
  • power transfer breaker is a device used to transfer the load from the electricity power line to the emergency generators. In case of overload, it also functions as a circuit breaker. In this work, a new mechanism for the device is suggested. Among the various design challenges, optimization of the trigger mechanism is identified as of central importance. Optimal design decisions are made with the use of Taguchi method.

  • PDF

A Characteristics of Impedance Propagation by the Unsteady Flow in a Hydraulic Pipeline (유압관로의 비정상유동에 따른 임피던스 전달특성)

  • Mo Yang-Woo;Yoo Young-Tae;Na Gee-Dae;Kim Ji-Hwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.48-55
    • /
    • 2004
  • Design for quite operation of fluid power system requires the understanding of noise and vibration characteristics of the system. This paper presents a dynamic response of design of hydraulic circuit. Experimental investigations on the attenuation of pressure ripple in automotive power steering hydraulic pipe line is examined. Also, a mathematical model of hydraulic pipe is p개posed to support a design of the hydraulic circuit. and the impedance characteristics of pressure ripple is analyzed. It is experimentally shown that power steering hydraulic pipe attenuates pressure ripple with high frequency.

Resistive Hts-Fcl Emtdc Modeling By Using Probabilistic Design Methodology

  • Yoon, Jae-Young;Kim, Jong-Yul;Lee, Seung-Ryul
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.69-72
    • /
    • 2004
  • Nowadays, one of the serious problems in the KEPCO system is a much higher fault current than the SCC (Short Circuit Capacity) of the circuit breaker. Since superconductivity technology has become more developed, the HTS-FCL (High Temperature Superconductor-Fault Current Limiter) may become an attractive alternative to solving the fault current problem. In order to achieve the best performance, the parameters of HTS-FCL should be designed optimally. Under this setting, this paper presents the optimal design method of parameters for resistive type HTS-FCL using the Monte Carlo technique.