• Title/Summary/Keyword: Power Cell

Search Result 4,001, Processing Time 0.036 seconds

Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics (퍼지 논리를 이용한 연료전지/축전지 하이브리드 시스템의 운전제어)

  • Jeong, Kwi-Seong;Lee, Won-Yong;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Hybrid power systems with fuel cells and batteries have the potential to improve the operation efficiency and dynamic response. A proper load management strategy is important to better system efficiency and endurance in hybrid systems. In this paper, a fuzzy logic algorithm has been used to determine the fuel cell output power depending on the external required power and the battery state of charge(SoC). If the required power of the hybrid system is small and the SoC is small, then the greater part of the fuel cell power is used to charge the battery pack. If the required power is relatively big and the SoC is big, then fuel cell and battery are concurrently used to supply the required power. These IF-THEN operation rules are implemented by fuzzy logic for the energy management system of hybrid system. The strategy is evaluated by simulation. The results show that fuzzy logic can be effectively used to optimize the operational efficiency of hybrid system and to maintain the battery SoC properly.

Scan Cell Grouping Algorithm for Low Power Design

  • Kim, In-Soo;Min, Hyoung-Bok
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.130-134
    • /
    • 2008
  • The increasing size of very large scale integration (VLSI) circuits, high transistor density, and popularity of low-power circuit and system design are making the minimization of power dissipation an important issue in VLSI design. Test Power dissipation is exceedingly high in scan based environments wherein scan chain transitions during the shift of test data further reflect into significant levels of circuit switching unnecessarily. Scan chain or cell modification lead to reduced dissipations of power. The ETC algorithm of previous work has weak points. Taking all of this into account, we therefore propose a new algorithm. Its name is RE_ETC. The proposed modifications in the scan chain consist of Exclusive-OR gate insertion and scan cell reordering, leading to significant power reductions with absolutely no area or performance penalty whatsoever. Experimental results confirm the considerable reductions in scan chain transitions. We show that modified scan cell has the improvement of test efficiency and power dissipations.

High-Efficiency Grid-Tied Power Conditioning System for Fuel Cell Power Generation

  • Jeong, Jong-Kyou;Han, Byung-Moon;Lee, Jun-Young;Choi, Nam-Sup
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.551-560
    • /
    • 2011
  • This paper proposes a grid-tied power conditioning system for the fuel cell power generation, which consists of a 2-stage DC-DC converter and a 3-phase PWM inverter. The 2-stage DC-DC converter boosts the fuel cell stack voltage of 26-48V up to 400V, using a hard-switching boost converter and a high-frequency unregulated LLC resonant converter. The operation of the proposed power conditioning system was verified through simulations with PSCAD/EMTDC software. Based on the simulation results, a laboratory experimental set-up was built with a 1.2kW PEM fuel-cell stack to verify the feasibility of hardware implementation. The developed power conditioning system shows a high efficiency of 91%, which is a very positive result for the commercialization.

Power Flow Control of Grid-Connected Fuel Cell Distributed Generation Systems

  • Hajizadeh, Amin;Golkar, Masoud Aliakbar
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.143-151
    • /
    • 2008
  • This paper presents the operation of Fuel Cell Distributed Generation(FCDG) systems in distribution systems. Hence, modeling, controller design, and simulation study of a Solid Oxide Fuel Cell(SOFC) distributed generation(DG) system are investigated. The physical model of the fuel cell stack and dynamic models of power conditioning units are described. Then, suitable control architecture based on fuzzy logic and the neural network for the overall system is presented in order to activate power control and power quality improvement. A MATLAB/Simulink simulation model is developed for the SOFC DG system by combining the individual component models and the controllers designed for the power conditioning units. Simulation results are given to show the overall system performance including active power control and voltage regulation capability of the distribution system.

Optimal Electricity and Heat Production Strategies of Fuel Cell Device in a Micro-grid Energy System (마이크로 전력계통에서 연료전지 발전시스템의 전기/열의 최적운영 기법 연구)

  • Lee, Joo-Won;Park, Jong-Bae;Kim, Su-Duk;Kim, Chang-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1093-1099
    • /
    • 2009
  • Alternative energy sources such as renewable energy like solar power systems, wind power systems, or fuel cell power systems has been the rising issue in the electrical power system. This paper discusses an economic study analysis of fuel cells in the korean electricity market. It includes the basic concept of a fuel cell and the korean electricity market. It also describes the need of renewable energy and how the fuel cell is connected with the local grid. This paper shows the impact of production and recovering thermal energy of a grid-connected fuel cell power system. The profit maximization approach has been structured including electrical power trade with the local grid and heat trade within the micro-grid. The strategies are evaluated using a local load that uses electric and thermal power which has different patterns between summer and winter periods. The solution algorithm is not newly developed one, but is solved by an application called GAMS. Results indicate the need and usefulness of a fuel cell power system.

Dynamic performances of output power of wind turbine and fuel-cell hybrid system (풍력-연료전지 하이브리드 시스템 출력의 동특성 분석)

  • Moon, Dae-Seong;Kim, Yun-Seong;Seo, Jae-Jin;Won, Dong-Jun;Park, Young-Ho;Moon, Seung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.545-546
    • /
    • 2007
  • A hybrid system that uses a parallel combination of wind turbine and fuel cell is modeled. Wind energy source is characterized by its intermittent and variable nature. The output power generated by the fuel cell is stable and can be properly controlled. Therefore, fuel cell system can be added to the wind turbine system for the purpose of ensuring continuous power flow. Fuel cell helps to compensate power and regulate the frequency in power system. Simulation results show the effect of the hybrid system on power regulation. The excess power generated by the wind turbine was directed to an electrolyzer to generate hydrogen and the power deficit was compensated by the fuel cell.

  • PDF

An Development of Landscape Lighting Power Control System with Solar Cell Generator Equipment for Energy Saving (에너지절감을 위한 태양광발전설비 연계형 경관조명 전력제어시스템의 개발)

  • Kim, Dong-Wan;Park, Sung-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.364-371
    • /
    • 2010
  • In this paper, we propose the landscape lighting power control system with solar sell generator equipment for energy saving, and also which is included the landscape lighting power transformation device. The power transformation device can check inverse current in the power of the solar cell module and control the power of the battery. And we present the design of landscape lighting power control system. The power control system uses microprocessor with charging system and power transformation device. And also it can control the power of loads under consideration intensity of illumination. The landscape lighting loads are composed of LED(Lighting Emitting Diode) and HID(High Intensity Discharge)lamps. To evaluate property, we installed the solar cell array which generate three kilo watt power. Experimental results show that the proposed system can have stability and energy saving on the mixed configuration of electric loads with DC and AC lamps.

Design Concept and Architecture Analysis of Cell Microprocessor (Cell 마이크로프로세서 설계 개념과 아키텍쳐 분석)

  • Moon Sang-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.927-930
    • /
    • 2006
  • While Intel has been increasing its exclusive possession in the system IC semiconductor market, IBM, Sony, and Toshiba founded an alliance to develop the next entertainment multi-core processor, which is named CELL. Cell is designed upon the Power architecture and includes 8 SPE (Synergistic processor Element) cores for data handling, and supports SIMD architecture for optimal execution of multimedia, or game applications. Also, it includes expanded Power microarchitecture. In this paper, we analyzed and researched the Cell microprocessor, which is evaluated as the most powerful processor in this era.

  • PDF

Performance Analysis of a Combined Scroll Expander-compressor unit for a Fuel Cell System (연료전지용 스크롤 팽창기-압축기 성능해석)

  • Kim, S.J.;Ahn, J.M.;Kim, H.J.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.11-19
    • /
    • 2009
  • This paper introduces a conceptual design of a combined scroll expander-compressor unit for a fuel cell. Since air discharged out of the fuel cell stack has still high pressure energy, some power can be extracted from the air by directing it to pass through an expanding device. Such extracted power can be used to drive an auxiliary compressor. For this purpose, a scroll type expander coupled to a scroll type compressor was designed for a 1kW-class fuel cell. The orbiting scroll members of the expander and the compressor were made to share three of common drive shafts installed in the mid frame plate. Performance analysis for the combined expander-compressor unit showed that the installation of this unit could reduce the auxiliary power consumption in the fuel cell by about 42%.

  • PDF

The Modeling of Power conversion system with PEM fuel cell (연료전지를 이용한 전력변환장치 시스템 모델링)

  • Han, Kyung-He;Kwon, Sam-Yung;Park, Hyun-June;Lee, Byung-Song;Baek, Soo-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1984-1989
    • /
    • 2008
  • A powered system with fuel cell is regarded as a high current and low voltage source. Effects of the loads on the electrical power source are important to optimize the integrated power system. The design parameters of the system should be chosen by taking into account the characteristics of the fuel cell, so the costs of the power system at given operating conditions can be reduced. Furthermore, the dynamics characteristic of the system is crucial to acquire performance in applications, particularly interactions between loads and the fuel cell system. Currently, no integrated simulation has been approached to analyze interrelated effects. Therefore, the dynamic models of power conversion system with a PEM fuel cell that includes the PEM fuel cell stack, DC/DC converter and associated controls is developed. Electric lads for the system are derived by using a power theory that separates a load current into active, reactive, distortion or a mixed current component. Dependency of the DC capacitor on the loads are analyzed.

  • PDF