• Title/Summary/Keyword: Power 모델

Search Result 4,268, Processing Time 0.033 seconds

Investment Priorities and Weight Differences of Impact Investors (임팩트 투자자의 투자 우선순위와 비중 차이에 관한 연구)

  • Yoo, Sung Ho;Hwangbo, Yun
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.3
    • /
    • pp.17-32
    • /
    • 2023
  • In recent years, the need for social ventures that aim to grow while solving social problems through the efficiency and effectiveness of commercial organizations in the market has increased, while there is a limit to how much the government and the public can do to solve social problems. Against this background, the number of social venture startups is increasing in the domestic startup ecosystem, and interest in impact investors, which are investors in social ventures, is also increasing. Therefore, this research utilized judgment analysis technology to objectively analyze the validity and weight of judgment information based on the cognitive process and decision-making environment in the investment decision-making of impact investors. We proceeded with the research by constructing three classifications; first, investment priorities at the initial investment stage for financial benefit and return on investment as an investor, second, the political skills of the entrepreneurs (teams) for the social impact and ripple power, and social venture coexistence and solidarity, third, the social mission of a social venture that meets the purpose of an impact investment fund. As a result of this research, first of all, the investment decision-making priorities of impact investors are the expertise of the entrepreneur (team), the potential rate of return when the entrepreneur (team) succeeds, and the social mission of the entrepreneur (team). Second, impact investors do not have a uniform understanding of the investment decision-making factors, and the factors that determine investment decisions are different, and there are differences in the degree of the weighting. Third, among the various investment decision-making factors of impact investment, "entrepreneur's (team's) networking ability", "entrepreneur's (team's) social insight", "entrepreneur's (team's) interpersonal influence" was relatively lower than the other four factors. The practical contribution through this research is to help social ventures understand the investment determinant factors of impact investors in the process of financing, and impact investors can be expected to improve the quality of investment decision-making by referring to the judgment cases and analysis of impact investors. The academic contribution is that it empirically investigated the investment priorities and weighting differences of impact investors.

  • PDF

Development of an Automated Algorithm for Analyzing Rainfall Thresholds Triggering Landslide Based on AWS and AMOS

  • Donghyeon Kim;Song Eu;Kwangyoun Lee;Sukhee Yoon;Jongseo Lee;Donggeun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.125-136
    • /
    • 2024
  • This study presents an automated Python algorithm for analyzing rainfall characteristics to establish critical rainfall thresholds as part of a landslide early warning system. Rainfall data were sourced from the Korea Meteorological Administration's Automatic Weather System (AWS) and the Korea Forest Service's Automatic Mountain Observation System (AMOS), while landslide data from 2020 to 2023 were gathered via the Life Safety Map. The algorithm involves three main steps: 1) processing rainfall data to correct inconsistencies and fill data gaps, 2) identifying the nearest observation station to each landslide location, and 3) conducting statistical analysis of rainfall characteristics. The analysis utilized power law and nonlinear regression, yielding an average R2 of 0.45 for the relationships between rainfall intensity-duration, effective rainfall-duration, antecedent rainfall-duration, and maximum hourly rainfall-duration. The critical thresholds identified were 0.9-1.4 mm/hr for rainfall intensity, 68.5-132.5 mm for effective rainfall, 81.6-151.1 mm for antecedent rainfall, and 17.5-26.5 mm for maximum hourly rainfall. Validation using AUC-ROC analysis showed a low AUC value of 0.5, highlighting the limitations of using rainfall data alone to predict landslides. Additionally, the algorithm's speed performance evaluation revealed a total processing time of 30 minutes, further emphasizing the limitations of relying solely on rainfall data for disaster prediction. However, to mitigate loss of life and property damage due to disasters, it is crucial to establish criteria using quantitative and easily interpretable methods. Thus, the algorithm developed in this study is expected to contribute to reducing damage by providing a quantitative evaluation of critical rainfall thresholds that trigger landslides.

Development of a complex failure prediction system using Hierarchical Attention Network (Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발)

  • Park, Youngchan;An, Sangjun;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.127-148
    • /
    • 2020
  • The data center is a physical environment facility for accommodating computer systems and related components, and is an essential foundation technology for next-generation core industries such as big data, smart factories, wearables, and smart homes. In particular, with the growth of cloud computing, the proportional expansion of the data center infrastructure is inevitable. Monitoring the health of these data center facilities is a way to maintain and manage the system and prevent failure. If a failure occurs in some elements of the facility, it may affect not only the relevant equipment but also other connected equipment, and may cause enormous damage. In particular, IT facilities are irregular due to interdependence and it is difficult to know the cause. In the previous study predicting failure in data center, failure was predicted by looking at a single server as a single state without assuming that the devices were mixed. Therefore, in this study, data center failures were classified into failures occurring inside the server (Outage A) and failures occurring outside the server (Outage B), and focused on analyzing complex failures occurring within the server. Server external failures include power, cooling, user errors, etc. Since such failures can be prevented in the early stages of data center facility construction, various solutions are being developed. On the other hand, the cause of the failure occurring in the server is difficult to determine, and adequate prevention has not yet been achieved. In particular, this is the reason why server failures do not occur singularly, cause other server failures, or receive something that causes failures from other servers. In other words, while the existing studies assumed that it was a single server that did not affect the servers and analyzed the failure, in this study, the failure occurred on the assumption that it had an effect between servers. In order to define the complex failure situation in the data center, failure history data for each equipment existing in the data center was used. There are four major failures considered in this study: Network Node Down, Server Down, Windows Activation Services Down, and Database Management System Service Down. The failures that occur for each device are sorted in chronological order, and when a failure occurs in a specific equipment, if a failure occurs in a specific equipment within 5 minutes from the time of occurrence, it is defined that the failure occurs simultaneously. After configuring the sequence for the devices that have failed at the same time, 5 devices that frequently occur simultaneously within the configured sequence were selected, and the case where the selected devices failed at the same time was confirmed through visualization. Since the server resource information collected for failure analysis is in units of time series and has flow, we used Long Short-term Memory (LSTM), a deep learning algorithm that can predict the next state through the previous state. In addition, unlike a single server, the Hierarchical Attention Network deep learning model structure was used in consideration of the fact that the level of multiple failures for each server is different. This algorithm is a method of increasing the prediction accuracy by giving weight to the server as the impact on the failure increases. The study began with defining the type of failure and selecting the analysis target. In the first experiment, the same collected data was assumed as a single server state and a multiple server state, and compared and analyzed. The second experiment improved the prediction accuracy in the case of a complex server by optimizing each server threshold. In the first experiment, which assumed each of a single server and multiple servers, in the case of a single server, it was predicted that three of the five servers did not have a failure even though the actual failure occurred. However, assuming multiple servers, all five servers were predicted to have failed. As a result of the experiment, the hypothesis that there is an effect between servers is proven. As a result of this study, it was confirmed that the prediction performance was superior when the multiple servers were assumed than when the single server was assumed. In particular, applying the Hierarchical Attention Network algorithm, assuming that the effects of each server will be different, played a role in improving the analysis effect. In addition, by applying a different threshold for each server, the prediction accuracy could be improved. This study showed that failures that are difficult to determine the cause can be predicted through historical data, and a model that can predict failures occurring in servers in data centers is presented. It is expected that the occurrence of disability can be prevented in advance using the results of this study.

End to End Model and Delay Performance for V2X in 5G (5G에서 V2X를 위한 End to End 모델 및 지연 성능 평가)

  • Bae, Kyoung Yul;Lee, Hong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.107-118
    • /
    • 2016
  • The advent of 5G mobile communications, which is expected in 2020, will provide many services such as Internet of Things (IoT) and vehicle-to-infra/vehicle/nomadic (V2X) communication. There are many requirements to realizing these services: reduced latency, high data rate and reliability, and real-time service. In particular, a high level of reliability and delay sensitivity with an increased data rate are very important for M2M, IoT, and Factory 4.0. Around the world, 5G standardization organizations have considered these services and grouped them to finally derive the technical requirements and service scenarios. The first scenario is broadcast services that use a high data rate for multiple cases of sporting events or emergencies. The second scenario is as support for e-Health, car reliability, etc.; the third scenario is related to VR games with delay sensitivity and real-time techniques. Recently, these groups have been forming agreements on the requirements for such scenarios and the target level. Various techniques are being studied to satisfy such requirements and are being discussed in the context of software-defined networking (SDN) as the next-generation network architecture. SDN is being used to standardize ONF and basically refers to a structure that separates signals for the control plane from the packets for the data plane. One of the best examples for low latency and high reliability is an intelligent traffic system (ITS) using V2X. Because a car passes a small cell of the 5G network very rapidly, the messages to be delivered in the event of an emergency have to be transported in a very short time. This is a typical example requiring high delay sensitivity. 5G has to support a high reliability and delay sensitivity requirements for V2X in the field of traffic control. For these reasons, V2X is a major application of critical delay. V2X (vehicle-to-infra/vehicle/nomadic) represents all types of communication methods applicable to road and vehicles. It refers to a connected or networked vehicle. V2X can be divided into three kinds of communications. First is the communication between a vehicle and infrastructure (vehicle-to-infrastructure; V2I). Second is the communication between a vehicle and another vehicle (vehicle-to-vehicle; V2V). Third is the communication between a vehicle and mobile equipment (vehicle-to-nomadic devices; V2N). This will be added in the future in various fields. Because the SDN structure is under consideration as the next-generation network architecture, the SDN architecture is significant. However, the centralized architecture of SDN can be considered as an unfavorable structure for delay-sensitive services because a centralized architecture is needed to communicate with many nodes and provide processing power. Therefore, in the case of emergency V2X communications, delay-related control functions require a tree supporting structure. For such a scenario, the architecture of the network processing the vehicle information is a major variable affecting delay. Because it is difficult to meet the desired level of delay sensitivity with a typical fully centralized SDN structure, research on the optimal size of an SDN for processing information is needed. This study examined the SDN architecture considering the V2X emergency delay requirements of a 5G network in the worst-case scenario and performed a system-level simulation on the speed of the car, radius, and cell tier to derive a range of cells for information transfer in SDN network. In the simulation, because 5G provides a sufficiently high data rate, the information for neighboring vehicle support to the car was assumed to be without errors. Furthermore, the 5G small cell was assumed to have a cell radius of 50-100 m, and the maximum speed of the vehicle was considered to be 30-200 km/h in order to examine the network architecture to minimize the delay.

Categorizing Quality Features of Franchisees: In the case of Korean Food Service Industry (프랜차이즈 매장 품질요인의 속성분류: 국내 외식업을 중심으로)

  • Byun, Sook-Eun;Cho, Eun-Seong
    • Journal of Distribution Research
    • /
    • v.16 no.1
    • /
    • pp.95-115
    • /
    • 2011
  • Food service is the major part of franchise business in Korea, accounting for 69.9% of the brands in the market. As the food service industry becomes mature, many franchisees have struggled to survive in the market. In general, consumers have higher levels of expectation toward service quality of franchised outlets compared that of (non-franchised) independent ones. They also tend to believe that franchisees deliver standardized service at the uniform food price, regardless of their locations. Such beliefs seem to be important reasons that consumers prefer franchised outlets to independent ones. Nevertheless, few studies examined the impact of qualify features of franchisees on customer satisfaction so far. To this end, this study examined the characteristics of various quality features of franchisees in the food service industry, regarding their relationship with customer satisfaction and dissatisfaction. The quality perception of heavy-users was also compared with that of light-users in order to find insights for developing differentiated marketing strategy for the two segments. Customer satisfaction has been understood as a one-dimensional construct while there are recent studies that insist two-dimensional nature of the construct. In this regard, Kano et al. (1984) suggested to categorize quality features of a product or service into five types, based on their relation to customer satisfaction and dissatisfaction: Must-be quality, Attractive quality, One-dimensional quality, Indifferent quality, and Reverse quality. According to the Kano model, customers are more dissatisfied when Must-be quality(M) are not fulfilled, but their satisfaction does not arise above neutral no matter how fully the quality fulfilled. In comparison, customers are more satisfied with a full provision of Attactive quality(A) but manage to accept its dysfunction. One-dimensional quality(O) results in satisfaction when fulfilled and dissatisfaction when not fulfilled. For Indifferent quality(I), its presence or absence influences neither customer satisfaction nor dissatisfaction. Lastly, Reverse quality(R) refers to the features whose high degree of achievement results in customer dissatisfaction rather than satisfaction. Meanwhile, the basic guidelines of the Kano model have a limitation in that the quality type of each feature is simply determined by calculating the mode statistics. In order to overcome such limitation, the relative importance of each feature on customer satisfaction (Better value; b) and dissatisfaction (Worse value; w) were calculated following the formulas below (Timko, 1993). The Better value indicates how much customer satisfaction is increased by providing the quality feature in question. In contrast, the Worse value indicates how much customer dissatisfaction is decreased by providing the quality feature. Better = (A + O)/(A+O+M+I) Worse = (O+M)/(A+O+M+I)(-1) An on-line survey was performed in order to understand the nature of quality features of franchisees in the food service industry by applying the Kano Model. A total of twenty quality features (refer to the Table 2) were identified as the result of literature review in franchise business and a pre-test with fifty college students in Seoul. The potential respondents of our main survey was limited to the customers who have visited more than two restaurants/stores of the same franchise brand. Survey invitation e-mails were sent out to the panels of a market research company and a total of 257 responses were used for analysis. Following the guidelines of Kano model, each of the twenty quality features was classified into one of the five types based on customers' responses to a set of questions: "(1) how do you feel if the following quality feature is fulfilled in the franchise restaurant that you visit," and "(2) how do you feel if the following quality feature is not fulfilled in the franchise restaurant that you visit." The analyses revealed that customers' dissatisfaction with franchisees is commonly associated with the poor level of cleanliness of the store (w=-0.872), kindness of the staffs(w=-0.890), conveniences such as parking lot and restroom(w=-0.669), and expertise of the staffs(w=-0.492). Such quality features were categorized as Must-be quality in this study. While standardization or uniformity across franchisees has been emphasized in franchise business, this study found that consumers are interested only in uniformity of price across franchisees(w=-0.608), but not interested in standardizations of menu items, interior designs, customer service procedures, and food tastes. Customers appeared to be more satisfied when the franchise brand has promotional events such as giveaways(b=0.767), good accessibility(b=0.699), customer loyalty programs(b=0.659), award winning history(b=0.641), and outlets in the overseas market(b=0.506). The results are summarized in a matrix form in Table 1. Better(b) and Worse(w) index indicate relative importance of each quality feature on customer satisfaction and dissatisfaction, respectively. Meanwhile, there were differences in perceiving the quality features between light users and heavy users of any specific franchise brand in the food service industry. Expertise of the staffs was labeled as Must-be quality for heavy users but Indifferent quality for light users. Light users seemed indifferent to overseas expansion of the brand and offering new menu items on a regular basis, while heavy users appeared to perceive them as Attractive quality. Such difference may come from their different levels of involvement when they eat out. The results are shown in Table 2. The findings of this study help practitioners understand the quality features they need to focus on to strengthen the competitive power in the food service market. Above all, removing the factors that cause customer dissatisfaction seems to be the most critical for franchisees. To retain loyal customers of the franchise brand, it is also recommended for franchisor to invest resources in the development of new menu items as well as training programs for the staffs. Lastly, if resources allow, promotional events, loyalty programs, overseas expansion, award-winning history can be considered as tools for attracting more customers to the business.

  • PDF

Analysis of promising countries for export using parametric and non-parametric methods based on ERGM: Focusing on the case of information communication and home appliance industries (ERGM 기반의 모수적 및 비모수적 방법을 활용한 수출 유망국가 분석: 정보통신 및 가전 산업 사례를 중심으로)

  • Jun, Seung-pyo;Seo, Jinny;Yoo, Jae-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.175-196
    • /
    • 2022
  • Information and communication and home appliance industries, which were one of South Korea's main industries, are gradually losing their export share as their export competitiveness is weakening. This study objectively analyzed export competitiveness and suggested export-promising countries in order to help South Korea's information communication and home appliance industries improve exports. In this study, network properties, centrality, and structural hole analysis were performed during network analysis to evaluate export competitiveness. In order to select promising export countries, we proposed a new variable that can take into account the characteristics of an already established International Trade Network (ITN), that is, the Global Value Chain (GVC), in addition to the existing economic factors. The conditional log-odds for individual links derived from the Exponential Random Graph Model (ERGM) in the analysis of the cross-border trade network were assumed as a proxy variable that can indicate the export potential. In consideration of the possibility of ERGM linkage, a parametric approach and a non-parametric approach were used to recommend export-promising countries, respectively. In the parametric method, a regression analysis model was developed to predict the export value of the information and communication and home appliance industries in South Korea by additionally considering the link-specific characteristics of the network derived from the ERGM to the existing economic factors. Also, in the non-parametric approach, an abnormality detection algorithm based on the clustering method was used, and a promising export country was proposed as a method of finding outliers that deviate from two peers. According to the research results, the structural characteristic of the export network of the industry was a network with high transferability. Also, according to the centrality analysis result, South Korea's influence on exports was weak compared to its size, and the structural hole analysis result showed that export efficiency was weak. According to the model for recommending promising exporting countries proposed by this study, in parametric analysis, Iran, Ireland, North Macedonia, Angola, and Pakistan were promising exporting countries, and in nonparametric analysis, Qatar, Luxembourg, Ireland, North Macedonia and Pakistan were analyzed as promising exporting countries. There were differences in some countries in the two models. The results of this study revealed that the export competitiveness of South Korea's information and communication and home appliance industries in GVC was not high compared to the size of exports, and thus showed that exports could be further reduced. In addition, this study is meaningful in that it proposed a method to find promising export countries by considering GVC networks with other countries as a way to increase export competitiveness. This study showed that, from a policy point of view, the international trade network of the information communication and home appliance industries has an important mutual relationship, and although transferability is high, it may not be easily expanded to a three-party relationship. In addition, it was confirmed that South Korea's export competitiveness or status was lower than the export size ranking. This paper suggested that in order to improve the low out-degree centrality, it is necessary to increase exports to Italy or Poland, which had significantly higher in-degrees. In addition, we argued that in order to improve the centrality of out-closeness, it is necessary to increase exports to countries with particularly high in-closeness. In particular, it was analyzed that Morocco, UAE, Argentina, Russia, and Canada should pay attention as export countries. This study also provided practical implications for companies expecting to expand exports. The results of this study argue that companies expecting export expansion need to pay attention to countries with a relatively high potential for export expansion compared to the existing export volume by country. In particular, for companies that export daily necessities, countries that should pay attention to the population are presented, and for companies that export high-end or durable products, countries with high GDP, or purchasing power, relatively low exports are presented. Since the process and results of this study can be easily extended and applied to other industries, it is also expected to develop services that utilize the results of this study in the public sector.

Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification (전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법)

  • Byambajav, Batkhuu;Alikhanov, Jumabek;Fang, Yang;Ko, Seunghyun;Jo, Geun Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet) is one class of the powerful Deep Neural Network that can analyze and learn hierarchies of visual features. Originally, first neural network (Neocognitron) was introduced in the 80s. At that time, the neural network was not broadly used in both industry and academic field by cause of large-scale dataset shortage and low computational power. However, after a few decades later in 2012, Krizhevsky made a breakthrough on ILSVRC-12 visual recognition competition using Convolutional Neural Network. That breakthrough revived people interest in the neural network. The success of Convolutional Neural Network is achieved with two main factors. First of them is the emergence of advanced hardware (GPUs) for sufficient parallel computation. Second is the availability of large-scale datasets such as ImageNet (ILSVRC) dataset for training. Unfortunately, many new domains are bottlenecked by these factors. For most domains, it is difficult and requires lots of effort to gather large-scale dataset to train a ConvNet. Moreover, even if we have a large-scale dataset, training ConvNet from scratch is required expensive resource and time-consuming. These two obstacles can be solved by using transfer learning. Transfer learning is a method for transferring the knowledge from a source domain to new domain. There are two major Transfer learning cases. First one is ConvNet as fixed feature extractor, and the second one is Fine-tune the ConvNet on a new dataset. In the first case, using pre-trained ConvNet (such as on ImageNet) to compute feed-forward activations of the image into the ConvNet and extract activation features from specific layers. In the second case, replacing and retraining the ConvNet classifier on the new dataset, then fine-tune the weights of the pre-trained network with the backpropagation. In this paper, we focus on using multiple ConvNet layers as a fixed feature extractor only. However, applying features with high dimensional complexity that is directly extracted from multiple ConvNet layers is still a challenging problem. We observe that features extracted from multiple ConvNet layers address the different characteristics of the image which means better representation could be obtained by finding the optimal combination of multiple ConvNet layers. Based on that observation, we propose to employ multiple ConvNet layer representations for transfer learning instead of a single ConvNet layer representation. Overall, our primary pipeline has three steps. Firstly, images from target task are given as input to ConvNet, then that image will be feed-forwarded into pre-trained AlexNet, and the activation features from three fully connected convolutional layers are extracted. Secondly, activation features of three ConvNet layers are concatenated to obtain multiple ConvNet layers representation because it will gain more information about an image. When three fully connected layer features concatenated, the occurring image representation would have 9192 (4096+4096+1000) dimension features. However, features extracted from multiple ConvNet layers are redundant and noisy since they are extracted from the same ConvNet. Thus, a third step, we will use Principal Component Analysis (PCA) to select salient features before the training phase. When salient features are obtained, the classifier can classify image more accurately, and the performance of transfer learning can be improved. To evaluate proposed method, experiments are conducted in three standard datasets (Caltech-256, VOC07, and SUN397) to compare multiple ConvNet layer representations against single ConvNet layer representation by using PCA for feature selection and dimension reduction. Our experiments demonstrated the importance of feature selection for multiple ConvNet layer representation. Moreover, our proposed approach achieved 75.6% accuracy compared to 73.9% accuracy achieved by FC7 layer on the Caltech-256 dataset, 73.1% accuracy compared to 69.2% accuracy achieved by FC8 layer on the VOC07 dataset, 52.2% accuracy compared to 48.7% accuracy achieved by FC7 layer on the SUN397 dataset. We also showed that our proposed approach achieved superior performance, 2.8%, 2.1% and 3.1% accuracy improvement on Caltech-256, VOC07, and SUN397 dataset respectively compare to existing work.

The Purpose and background of this study (노인질환에 대한 한양방동시종합검진 결과에 대한 보고)

  • Gwon, Gyeong-Suk;Lee, Tae-Hwan;Song, Jeong-Mo;Kim, In-Seop;Yun, Ho-Yeong;Im, Jun-Gyu
    • The Journal of Korean Medicine
    • /
    • v.15 no.2 s.28
    • /
    • pp.9-27
    • /
    • 1994
  • This study is to analyze of senile disease status and the social problem according to increased old ages, and then to find distributions of old man's diseases and health status efficiency of oriental-occidental contemporary health examination. And it is the first oriental-occidental contemporary health examination of old man performed by JeonJu Woosuk University Oriental Medicine Hospital and Woosuk-Clinic in nation. Methods The objects in this research are 641's old man of KimJe Gun's over 60's years performed medical examination at JeonJu Woosuk University Oriental- Mmedicine-Hospital and Woosuk-Clinic by oriental-occidental medical contemporary exam., from 1994, 24th June till 1994. 13th July. The 1st occident medical examination methods were consisted of chest x-ray check. blood and urine exam., measurement of blood pressure, visual power and audiometry. The Oriental medical examination methods were consisted of four diagnostics (望,聞,問,切), present illness. chief complaint, past history, families history, social history by question and SA Sang constitution test index. The results and conclusions The results and conclusions are the next: 1. In order of distribution. the athletic disease (75.8%),the digestive disease(43.4%), the circulatory disease(41.5%), the respiratory disease(22.3%), EENT disease(8.1%), the endocrinopathy(5.6%), and the genito-urinary disease(5.3%) are the results of the object about 641's old man, by the oriental-occidental medicine's contemporay exam. 2. Distribution of disease distiction are lumbago. gastritis and peptic ulcer. knee joint pain. heart disease. hypertension. chronic bronchitis. asthma. anemia. DM. Tbc. visual disturbance. CVA. etc in order. 3. Disease distribution according to age is almost high incident in 60-75years. Disease incidence is decreased except E.E.N.T disease in over 76years. 4. The relationships of disease and family history are: the 25.0% of CVA pts. has family history and the 11.6% of hypertension pts has family history. so they showed high relative family history. In addition the 5.6% of TBC pts. and the 2.6% of DM pts. have family history. 5. The relationships of disease and drinking are: Drinking proportion is the 36.4% in respiratory disease pts. the 34.7% in hypertension pts. the 33.3% in heart disease pts.. the 28.4% in digestive disease pts.. but because of no surveying drinking amount we can't know the absolut relationships of disease and drinking. 6. The relationships of Disease and smoking are: Smoking proportion is the 44.1% in respiratory disease pts.. the 38.0% in Heart disease pts.. the 29.8% in Hypertension pts.. but because of no surveying of smoking amount. we can't know the absolut relationships of disease and smoking. 7. Distribution of Sasang constitution is : Tae-eum-in 44.8%. So-yang-in 30.7%. So-eum-in 24.6%. Tae-yang-in 0.0%. And disease distribution of Sasang constitution distinction is ; Tae-eum-in has high incidence of circulation disease(50.0%) and respiratory disease(23.1%).So-yang-in has high incidence of athletics disease(77.7%) and EENT disease(12.2%), So-eum-in has high incidence of digestive disease(65.8%). 8. Distribution of abnormal result in occidental medical examination and oriental-occidental contemporal exam result is considerably different. This is the reason of needing oriental medicine exam, for characteristics of Senile. I think that the oriental-occidental contemporary examination in old man is much more effecient than only occident medical examination. This oriental-occidental contemporary examination has many defects because it is the first practice. To participate in the public health program efficiently. I think that we must improve lots of problems and present the model of the oriental-occidental contemporary examination and the project of oriental medicine's for public health.

  • PDF