• 제목/요약/키워드: Powders morphology

검색결과 300건 처리시간 0.029초

전구체의 특성 및 AlF3 융제가 청색 발광의 BAM:Eu 형광체의 특성에 미치는 영향 (Effects of the Characteristics of Precursor Powders and AlF3 Flux on the Properties of Blue-Emitting BAM:Eu Phosphor Powders)

  • 조중상;이상호;강윤찬
    • 한국재료학회지
    • /
    • 제18권3호
    • /
    • pp.137-142
    • /
    • 2008
  • Blue-emitting BAM:Eu phosphor powders were formed by post-treatment of precursor powders with hollow or dense morphologies. The morphologies of the precursor powders obtained by spray pyrolysis were controlled by changing the preparation conditions and by changing the type of spray solution. The effects of the morphologies of the precursor powders on the characteristics of the BAM : Eu phosphor powders reacted with $AlF_3$ flux were investigated. Precursor powders with a spherical shape and a hollow morphology produced BAM : Eu phosphor powders with a plate-like morphology, a fine size and a narrow size distribution. On the other hand, precursor powders with a spherical shape and dense morphology produced BAM : Eu phosphor powders with a plate-like morphology and a large size. $AlF_3$ flux improved the photoluminescence intensities of the BAM : Eu phosphor powders. The photoluminescence intensity of the fine-sized BAM : Eu phosphor powders with a plate-like morphology was 90% of the commercial product under vacuum ultraviolet conditions.

용매열 합성법에 의한 니켈 분말 합성 및 특성 (Synthesis and Characterization of Nickel Powders by a Solvothermal Processing)

  • 박찬;배동식
    • 한국재료학회지
    • /
    • 제26권5호
    • /
    • pp.246-249
    • /
    • 2016
  • Nickel powders were prepared under solvothermal condition by precipitation from metal nitrates with aqueous ammonium hydroxide. The powders were obtained at in a temperature range of $190-250^{\circ}C$ for 6h. The morphology and size of nickel powders were studied as a function of reaction temperature. The synthesis of nickel crystalline particles is possible under a solvothermal conditions in ethylene glycol solution. Characterization of the synthesized nickel powders were studied by XRD, SEM(FE-SEM) and TG/DSC. X-ray diffraction analysis of the synthesized powders indicated the formation of nickel structure after reaction. The average crystalline sizes of the synthesized nickel powders were in the range of 200-1000 nm; and the distribution of the powders was broad. The shape of the synthesized nickel particles was almost spherical. The morphology of synthesized nickel powders changed with reaction condition. It was possible to synthesize nickel powders directly in ethylene glycol without reducing agent.

Synthesis and Characterization of Y2O3 Powders by a Modified Solvothermal Process

  • Jeong, Kwang-Jin;Bae, Dong-Sik
    • 한국재료학회지
    • /
    • 제22권2호
    • /
    • pp.78-81
    • /
    • 2012
  • $Y_2O_3$ nanomaterials have been widely used in transparent ceramics and luminescent devices. Recently, many studies have focused on controlling the size and morphology of $Y_2O_3$ in order to obtain better material performance. $Y_2O_3$ powders were prepared under a modified solvothermal condition involving precipitation from metal nitrates with aqueous ammonium hydroxide. The powders were obtained at temperatures at $250^{\circ}C$ after a 6h process. The properties of the $Y_2O_3$ powders were studied as a function of the solvent ratio. The synthesis of $Y_2O_3$ crystalline particles is possible under a modified solvothermal condition in a water/ethylene glycol solution. Solvothermal processing condition parameters including the pH, reaction temperature and solvent ratio, have significant effects on the formation, phase component, morphology and particle size of yttria powders. Ethylene glycol is a versatile, widely used, inexpensive, and safe capping organic molecule for uniform nanoparticles besides as a solvent. The characterization of the synthesized Y2O3 powders were studied by XRD, SEM (FE-SEM) and TG/DSC. An X-ray diffraction analysis of the synthesized powders indicated the formation of the $Y_2O_3$ cubic structure upon calcination. The average crystalline sizes and distribution of the synthesized $Y_2O_3$ powders was less than 2 um and broad, respectively. The synthesized particles were spherical and hexagonal in shape. The morphology of the synthesized powders changed with the water and ethylene glycol ratio. The average size and shape of the synthesized particles could be controlled by adjusting the solvent ratio.

알콕사이드로부터 Seed가 첨가된 알루미나의 제조(I): 분말특성 (The Preparation of Seeded Alumina from Alkoxide (I): Powders)

  • 김창은;임광일;이해욱
    • 한국세라믹학회지
    • /
    • 제29권5호
    • /
    • pp.367-376
    • /
    • 1992
  • The powder characteristics of seeded alumina prepared from alkoxide by sol-gel method were studied. When ${\alpha}$-Al2O3 seeded powders used, these ${\alpha}$ phase transformation temperatures decreased than those of unseeded powders by 110$^{\circ}C$ and fine powders under 0.1 $\mu\textrm{m}$ could be obtained. When Fe-nitrate added powders used, fast transformation rate resulted from ionic effects of Fe3+, but hard aggregated morphology exhibited. When ${\alpha}$-Al2O3 and Fe nitrate simultaneously added, these powders represented lower transformation temperature but resulted in microstructure with aggregated particles.

  • PDF

Glycothermal법에 의한 ZnS 분말 합성 및 광촉매 특성 (Fabrication of ZnS Powder by Glycothermal Method and Its Photocatalytic Properties)

  • 박상준;임대영;송정환
    • 한국재료학회지
    • /
    • 제27권9호
    • /
    • pp.489-494
    • /
    • 2017
  • ZnS powder was synthesized using a relatively facile and convenient glycothermal method at various reaction temperatures. ZnS was successfully synthesized at temperatures as low as $125^{\circ}C$ using zinc acetate and thiourea as raw materials, and diethylene glycol as the solvent. No mineralizers or precipitation processes were used in the fabrication, which suggests that the spherical ZnS powders were directly prepared in the glycothermal method. The phase composition, morphology, and optical properties of the prepared ZnS powders were characterized using XRD, FE-SEM, and UV-vis measurements. The prepared ZnS powders had a zinc blende structure and showed average primary particles with diameters of approximately 20~30 nm, calculated from the XRD peak width. All of the powders consisted of aggregated secondary powders with spherical morphology and a size of approximately $0.1{\sim}0.5{\mu}m$; these powders contained many small primary nanopowders. The as-prepared ZnS exhibited strong photo absorption in the UV region, and a red-shift in the optical absorption spectra due to the improvement in powder size and crystallinity with increasing reaction temperature. The effects of the reaction temperature on the photocatalytic properties of the ZnS powders were investigated. The photocatalytic properties of the as-synthesized ZnS powders were evaluated according to the removal degree of methyl orange (MO) under UV irradiation (${\lambda}=365nm$). It was found that the ZnS powder prepared at above $175^{\circ}C$ exhibited the highest photocatalytic degradation, with nearly 95 % of MO decomposed through the mediation of photo-generated hydroxyl radicals after irradiation for 60 min. These results suggest that the ZnS powders could potentially be applicable as photocatalysts for the efficient degradation of organic pollutants.

세 가지 매체형 분쇄기를 이용한 분쇄공정에서 다양한 실험 조건에 대한 입자형상변화 (Particle Morphology via Change of Ground Particle for Various Experimental Conditions During a Grinding Process by Three Kinds of Media Mills)

  • 사꾸라기시오리;보르암갈란;이재현;최희규
    • 한국입자에어로졸학회지
    • /
    • 제11권1호
    • /
    • pp.9-19
    • /
    • 2015
  • This study investigated the effects of ball mill operation condition on the morphology of raw powders in the dry-type milling process using three types of ball mills traditional ball mill, stirred ball mill and planetary ball mill. Furthermore, since spherical powders offer the best combination of high hardness and high density, the optimum milling condition to produce sphere-shaped powders was studied. The applied rotation speed ranged from 200rpm (low rotation speed) to 700rpm (high rotation speed). The used ball size ranged from 1mm to 5mm. The metal powder morphology was studied using SEM, XRD and PSA. The aimed spherical powders could be obtained under the optimum experimental conditions: traditional ball mill(200rpm, 1mm ball), planetary ball mill (500rpm, 1mm ball) and also planetary ball mill (700rpm, 1 and 3 mm ball). The results show to the development of new material using spherical type copper powder/CNT composites for air-craft and automotive applications.

Polymerized complex법에 의한 ZnWO4 nanopower의 제조 (Synthesis of ZnWO4 Nanopowders by Polymerized complex Method)

  • 류정호;임창성;오근호
    • 한국세라믹학회지
    • /
    • 제39권3호
    • /
    • pp.321-326
    • /
    • 2002
  • 착체중합법을 사용하여 nano-size의 ZnWO$_4$ powder를 제조하였다. 금속이온물질로서 znic nitrate와 tungstic acid를 사용하였으며 용매는 ethylene glycol을 사용하였다. 300$^{\circ}$C부터 600$^{\circ}$C의 온도 영역에서 하소한 분말에 대해 열분해 및 결정화 과정, 분말의 형상, 입도 변화 양상을 분석하였다. 일반적인 고상합성시에 필요한 온도보다 현저히 낮은 온도인 400$^{\circ}$C에서 ZnWO$_4$상이 생성되었으며, 600$^{\circ}$C에서 완전한 경정상을 얻을 수 있었다. 합성된 분말은 400$^{\circ}$C와 500$^{\circ}$C에서 원형과 silk-worm 형태가 혼합된 입자 형상을 나타내었고, 600$^{\circ}$C에서보다 균질한 양상을 나타내었다. 합성된 분말의 입자 크기는 400$^{\circ}$C∼600$^{\circ}$C의 온도영역에서 19.9∼24.2nm 정도로 매우 미세하였으며, 하소 온도가 증가함에 따라 분말의 결정상과 입도가 증가하는 것을 확인하였다.

Glycothermal Process에 의한 $Fe_3O_4$ 분말 합성 (The Synthesis of $Fe_3O_4$ Powder through Glycothermal Process)

  • 노준석;조승범;최상흘
    • 한국세라믹학회지
    • /
    • 제34권11호
    • /
    • pp.1159-1164
    • /
    • 1997
  • Magnetite(Fe3O4) powders were synthesized through glycothermal reaction by using crystalline $\alpha$-FeOOH as precursor and ethyleanne glycol as solvent. The phase, morphology and particle size of synthesized powders were characterized by XRD and an SEM. When only ethylene glycol was used as solvent, the phase was transformed from $\alpha$-FeOOH to $\alpha$-Fe2O3 and finally Fe3O4 at 27$0^{\circ}C$ for 6hr without morphological change. But by addition of water, Fe3O4 powders were synthesized at 23$0^{\circ}C$ for 3hr through solution-recrystalization process. As the content of water addition increased, the particle shape changed from sphere to octahedron and the partcle size increased. When the excess amount of water added, residual $\alpha$-FeOOH or $\alpha$-Fe2O3 was recrystalized.

  • PDF

무전해 니켈 도금법으로 제조된 니켈-다이아몬드 복합분체의 특성 (Characteristics of Nickel-Diamond Composite Powders by Electroless Nickel Plating)

  • 안종관;김동진;;이재령;이익규;정헌생
    • 한국분말재료학회지
    • /
    • 제11권3호
    • /
    • pp.224-232
    • /
    • 2004
  • Ni-diamond composite powders with nickel layer of round-top type on the surface of synthetic diamond (140/170 mesh) were prepared by the electroless plating method (EN) with semi-batch reactor. The effects of nickel concentration, feeding rates of reductant, temperature, reaction time and stirring speeds on the weight percentage and morphology of deposited Ni, mean particle size and specific surface area of the composite powders were investigated by Atomic Adsortion Spectrometer, SEM-EDX, PSA and BET. It was found that nucleated Ni-P islands, acted as catalytic sites for further deposition and grown into these relatively thick layers with nodule-type on the surface of diamond by a lateral growth mechanism. The weight percentage of Ni in the composite powder increased with reaction time, feeding rate of reductant and temperature, but decreased with stirring speed. The weight percentage of Ni in Ni-diamond composite powder was 55% at 150 min., 200 rpm and 7$0^{\circ}C$ .

Investigation on Microstructure and Flowability of Gas Atomized Heat-resistant KHR45A Alloy Powders for Additive Manufacturing

  • Geonwoo Baek;Mohsen Saboktakin Rizi;Yeeun Lee;SungJae Jo;Joo-Hyun Choi;Soon-Jik Hong
    • 한국분말재료학회지
    • /
    • 제30권1호
    • /
    • pp.13-21
    • /
    • 2023
  • In additive manufacturing, the flowability of feedstock particles determines the quality of the parts that are affected by different parameters, including the chemistry and morphology of the powders and particle size distribution. In this study, the microstructures and flowabilities of gas-atomized heat-resistant alloys for additive manufacturing applications are investigated. A KHR45A alloy powder with a composition of Fe-30Cr-40Mn-1.8Nb (wt.%) is fabricated using gas atomization process. The microstructure and effect of powder chemistry and morphology on the flow behavior are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and revolution powder analysis. The results reveal the formation of spherical particles composed of single-phase FCC dendritic structures after gas atomization. SEM observations show variations in the microstructures of the powder particles with different size distributions. Elemental distribution maps, line scans, and high-resolution XPS results indicate the presence of a Si-rich oxide accompanied by Fe, Cr, and Nb metal oxides in the outer layer of the powders. The flowability behavior is found to be induced by the particle size distribution, which can be attributed to the interparticle interactions and friction of particles with different sizes.