• Title/Summary/Keyword: Powders and mechanical properties

Search Result 558, Processing Time 0.029 seconds

Improvement in Microstructure Homogeneity of Sintered Compacts through Powder Treatments and Alloy Designs

  • Hwang, K.S.;Wu, M.W.;Yen, F.C.;Sun, C.C.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.824-825
    • /
    • 2006
  • Homogeneous microstructures of the PM compacts are difficult to attain when mixed elemental powders are used. This study examined the microstructures of pressed-and-sintered and MIM products that contain Ni and Mo.Ni-rich areas, which were lean in carbon and were soft and were found easily in regular specimens. Gaps or cracks near the Ni-rich or Mo-rich areas were also frequently observed. This problem worsened when Ni and Mo particles were large and were irregular in shape. By using ball milling treatment and ferroalloy powders, the microstructure homogeneity and mechanical properties were improved. The addition of 0.5wt%Cr further improved the distribution of Ni because Cr reduced the repulsion effect between nickel and carbon. With the elimination of Ni-rich areas, more bainites and martensites were formed and mechanical properties were significantly improved.

  • PDF

Characteristics of Pre-alloyed Powders for Diamond Tools

  • Luo, Xi-Yu;Ma, Hong-Qiu;Kuang, Xing;Huang, Man;Tang, Ming-Qiang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1144-1145
    • /
    • 2006
  • In this paper, the fundamental attributes, phase composition of three pre-alloyed powders for diamond tools by water atomization were investigated. The density, hardness, bend strength and bending modulus of their hot pressing samples were examined. The results showed that the three pre-alloyed powders have excellent low temperature sintering characteristics. The physical and mechanical properties of the samples were found to be nearly the same as those of fine cobalt powders.

  • PDF

A Study on the Hydroxyapatite-Zirconia Composite Bioceramics (Hydroxyapatite Zirconia 계 복합 Bioceramics에 관한 연구)

  • 이종필;최현국;송종택;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.4
    • /
    • pp.289-296
    • /
    • 1991
  • Hydroxyapatite (HAp)-zirconia bioceramics, which have excellent biocompatibility with tissue of bone and tooth and good mechanical properties, were synthesized, and their properties and biocompatibility were investigated. HAp powders were synthesized with Ca/P=1.67 and pH 11 by precipitation method. A fine spherical monodispersed ZrO2 powders were prepared by metal alkoxide method, and then they were partially stabilized with 10 mol% CaO by solid state reaction at 1300℃. HAp-zirconia composites were prepared by sintering of these HAp mixed with various amount CaO-partially stabillized zirconia (PSZ). When HAp containing 15 wt% PSZ with 10 mol% CaO (PSZ(10C)) were sintered at 1250℃, it was prevented to decompose into TCP and ZrO2 was uniformly dispersed at HAp matrix. Mechanical strength of these sintered bodies were increased by addition of 15 wt% PSZ(10C), the bending strength of compacts fired at 1250℃ was 165 MPa. HAp-PSZ composites chemically bonded each other in Ringer's solution and the component of bonded layer was HAp. These composites did not prevent cell-growing and exhibit any cytotoxic effects.

  • PDF

Fabrication and Mechanical Properties of Porous Silicon Carbide Ceramics from Silicon and Carbon Mixture (실리콘과 카본을 이용한 다공질 탄화규소의 제조와 기계적 특성)

  • Kim, Jong-Chan;Lee, Eun Ju;Kim, Deug-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.429-433
    • /
    • 2013
  • Silicon, carbon, and B4C powders were used as raw materials for the fabrication of porous SiC. ${\beta}$-SiC was synthesized at $1500^{\circ}C$ in an Ar atmosphere from a silicon and carbon mixture. The synthesized powders were pressed into disk shapes and then heated at $2100^{\circ}C$. ${\beta}$-SiC particles transformed to ${\alpha}$-SiC at over $1900^{\circ}C$, and rapid grain growth of ${\alpha}$-SiC subsequently occurred and a porous structure with elongated plate-type grains was formed. The mechanism of this rapid grain growth is thought to be an evaporation-condensation reaction. The mechanical properties of the fabricated porous SiC were investigated and discussed.

The Effect of Cr and Mo Additions on the Improvement in Microstructural Homogeneity and Mechanical Properties of Ni-containing P/M Steels

  • Wu, Ming-Wei;Hwang, Kuen-Shyang;Huang, Hung-Shang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.931-932
    • /
    • 2006
  • The microstructures of Ni-containing P/M steels produced by admixed powders or diffusion alloyed powders are usually heterogeneous. To improve the microstructure homogeneity, the effects of Mo and Cr additions in the prealloyed powder form were examined. The results showed that the microstructural homogeneity was improved and superior mechanical properties were achieved with increases in the alloy content, particularly for the Cr. Such a beneficial effect was attained due to the reduction of the repelling effect between Ni and C, as was demonstrated through thermodynamic analysis using the Thermo-Calc software.

  • PDF

Microstructure and Mechanical Properties of Nano $ZrO_2$-dispersed Fe Sintered Bodies

  • Youn, Hyeong-Chul;Kim, Ki-Hyun;Choi, Chul-Jin;Lee, Byong-Teak
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.964-965
    • /
    • 2006
  • The injection molded Fe sintered bodies were fabricated using two kinds of nano Fe powders, $Fe-5%vol.ZrO_2$ and $Fe-10vol.%ZrO_2$ powders. The relationship between microstructure and mechanical properties depending on the $ZrO_2$ contents and sintering temperature were characterized by SEM and TEM techniques. In the wear test, the $Fe-0vol%ZrO_2$ sintered bodies showed mainly adhesive wear, but in the Fe-5%vol. $ZrO_2$ and Fe-10vol. % $ZrO_2$ composites the main wear behavior showed abrasive wear mode.

  • PDF

Planar Shock Wave Compaction of Oxidized Copper Nano Powders using High Speed Collision and Its Mechanical Properties (고속 충돌 시 발생하는 평면 충격파를 이용한 산화 나노 분말의 치밀화 및 기계적 특성 평가)

  • Ahn, Dong-Hyun;Kim, Wooyeol;Park, Lee Ju;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.39-43
    • /
    • 2014
  • Bulk nanostructured copper was fabricated by a shock compaction method using the planar shock wave generated by a single gas gun system. Nano sized powders, average diameter of 100 nm, were compacted into the capsule and target die, which were designed to eliminate the effect of undesired shock wave, and then impacted with an aluminum alloy target at 400 m/s. Microstructure and mechanical properties of the shock compact specimen were analyzed using an optical microscope (OM), scanning electron microscope (SEM), and micro indentation. Hardness results showed low values (approximately 45~80 Hv) similar or slightly higher than those of conventional coarse grained commercial purity copper. This result indicates the poor quality of bonding between particles. Images from OM and SEM also confirmed that no strong bonding was achieved between them due to the insufficient energy and surface oxygen layer of the powders.

Microstructures and Repeated Usage-Properties of de-$NO_{x}$ Transition Metals/ZSM-5 Catalyst Made by Mechanical Alloying Method (기계적합금화법을 이용하여 제조된 $NO_{x}$ 제거용 천이금속/ZSM-5촉매의 미세구조 및 반복사용특성)

  • 조규봉;안인섭;남태현
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.273-278
    • /
    • 1998
  • $De-NO_x$ transition metals(Cu, Co)/ZSM-5 catalyst was made by mechanical alloying method, and their microstructures and repeated usage-properties were investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The conversions ability of NO in the catalyst was measured. A part of ZSM-5 in CO/ZSM-5 composite powders was amorphous and the amorphous phase became less stable with increasing Co content. Conversion ability of NO in 10Cu/ZSM-5 powders decreased from 89% to 12% and that in 10Co/ZSM-5 decreased from 22% to 17% by 7 times conversion tests.

  • PDF

Mechanical Properties of Beta-Sialon Ceramics Prepared from TEOS and Kaolin (TEOS와 카올린으로부터 제조한 $\beta$-Sialon의 기계적 성질)

  • 임헌진;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.637-644
    • /
    • 1989
  • Beta-sialon powder(Z=1) was synthesized by the simultaeous reduction and nitridation of the mixed powders of Hadong kaolin and silica. Silicon hydroxide was prepared from Si-alkoxide by a hydrolysis method and amorphous silica was obtained from the calcination of the prepared silicon hydroxide. Hadong kaolin was mixed with both the silicon hydroxide and amorphous silica, respectively. The average particle size was 4${\mu}{\textrm}{m}$ and the morphology of particle was rod-like and equiaxed in the case of beta-sialon powder prepared form Hadong kaolin and silicon hydroxide(COMPOSITION A), whereas the average particle size was 3${\mu}{\textrm}{m}$ and the morphology of particle was equiaxed in the case of beta-sialon powder prepared from Hadong kaolin and amorphous silica(COMPOSITION B). The synthesized beta-sialon powders were hot-pressed at 175$0^{\circ}C$ for 2 hours under 30 MPa in a nitrogen atmosphere after YAG composition(8wt%) was added to these powders as a sintering agent. The hot-pressed specimens were annealed a 140$0^{\circ}C$ for 4 hours in a nitrogen atmosphere. The mechanical properties of sintered bodies were investigated in terms of M.O.R., fracture toughness and hardness. The measured values are as follows. COMPOSITION A : M.O.R. 508MPa, KIC 3.5MN/m3/2, hardness 13.6GPa. COMPOSITION B : M.O.R. 653MPa, KIC 5.4MN/m3/2, hardness 13.5GPa.

  • PDF

Rapid Sintering and Synthesis of TiAl by High-Frequency Induction Heating and its Mechanical properties (고주파유도 가열에 의한 나노구조의 TiAl 급속소결과 합성 및 기계적 성질)

  • Kim, Na-Ri;Na, Kwon-Il;Kim, Wonbaek;Cho, Sung-Wook;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.989-994
    • /
    • 2010
  • A nanopowder of TiAl was synthesized by high energy ball milling. Dense nanostuctured TiAl was consolidated using a high frequency induction heated sintering method within 2 minutes from mechanically synthesized powders of TiAl and horizontally milled powders of Ti+Al. Properties of the TiAl obtained using the two methods were compared. The grain size and hardness of TiAl sintered from horizontally milled Ti+Al powders and high energy ball milled TiAl powder were 40 nm, 20 nm, and $630kg/mm^2$, $700kg/mm^2$, respectively.