DOI QR코드

DOI QR Code

Rapid Sintering and Synthesis of TiAl by High-Frequency Induction Heating and its Mechanical properties

고주파유도 가열에 의한 나노구조의 TiAl 급속소결과 합성 및 기계적 성질

  • Kim, Na-Ri (Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Na, Kwon-Il (Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Kim, Wonbaek (Mineral Resources Research Division, Korea Institute of Geoscienceand Mineral Resources) ;
  • Cho, Sung-Wook (Mineral Resources Research Division, Korea Institute of Geoscienceand Mineral Resources) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, Engineering College, Chonbuk National University)
  • 김나리 (전북대학교 신소재공학부 신소재 개발 연구센터) ;
  • 나권일 (전북대학교 신소재공학부 신소재 개발 연구센터) ;
  • 김원백 (한국지질자원연구원) ;
  • 조성욱 (한국지질자원연구원) ;
  • 손인진 (전북대학교 신소재공학부 신소재 개발 연구센터)
  • Received : 2010.06.29
  • Published : 2010.11.25

Abstract

A nanopowder of TiAl was synthesized by high energy ball milling. Dense nanostuctured TiAl was consolidated using a high frequency induction heated sintering method within 2 minutes from mechanically synthesized powders of TiAl and horizontally milled powders of Ti+Al. Properties of the TiAl obtained using the two methods were compared. The grain size and hardness of TiAl sintered from horizontally milled Ti+Al powders and high energy ball milled TiAl powder were 40 nm, 20 nm, and $630kg/mm^2$, $700kg/mm^2$, respectively.

Keywords

Acknowledgement

Grant : 전략금속 산업원료화 기술개발

Supported by : 한국지질자원연구원

References

  1. N. Forouzanmelu, F. Karimzadeh, and M. H. Enayati, J. Alloys & Compounds 471, 93 (2009). https://doi.org/10.1016/j.jallcom.2008.03.121
  2. P. Bhattacharya, P. Bellon, R. S. Averback, and S. J. Hales, J. Alloys & Compounds 368, 187 (2004). https://doi.org/10.1016/j.jallcom.2003.08.079
  3. W. Z. Li, W. Gao, D. L. Zhang, and Z. H. Cai, Corrosion Science 291, 312 (1999).
  4. I. K. Moon and S. K. Lee, J. Alloys & Compounds 291, 312 (1999). https://doi.org/10.1016/S0925-8388(99)00299-6
  5. A. Couret, G.. Molenat, J. Galy, and M. Thomas, Intermetallics 16, 1134 (2008). https://doi.org/10.1016/j.intermet.2008.06.015
  6. M. S. El-Eskandarany, J. Alloys & Compounds 305, 225 (2000). https://doi.org/10.1016/S0925-8388(00)00692-7
  7. L. Fu, L. H. Cao, and Y. S. Fan, Scripta Materialia 44, 1061 (2001). https://doi.org/10.1016/S1359-6462(01)00668-6
  8. S. Berger, R. Porat, and R. Rosen, Progress in Materials 42, 311 (1997). https://doi.org/10.1016/S0079-6425(97)00021-2
  9. S. K. Bae, I. J. Shon, J. M. Doh, J. K. Yoon, and I. Y. Ko, Scripta Materialia 58, 425 (2008). https://doi.org/10.1016/j.scriptamat.2007.10.029
  10. I. J. Shon, D. K. Kim, K. T. Lee, and K. S. Nam, Met. Mater. Inter. 14, 593 (2008). https://doi.org/10.3365/met.mat.2008.10.593
  11. I. K. Jeong, J. M. Doh, I. Y. Ko, and I. J. Shon, J. Kor. Inst. Met. & Mater. 46, 223 (2008).
  12. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  13. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004). https://doi.org/10.1063/1.1774268
  14. J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  15. J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  16. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982).
  17. I. Barin, Thermochemical Data of Pure Substances, VCH, New York (1989) 71.
  18. X. Wu, Intermetallics 14, 1114 (2006). https://doi.org/10.1016/j.intermet.2005.10.019