• 제목/요약/키워드: Powder-in sheath rolling

검색결과 16건 처리시간 0.024초

분말시스압연법에 의해 제조된 알루미늄 분말성형체의 조직 및 기계적 성질 (Microstructure and Mechanical Property of Aluminum Powder Compact by Powder-in Sheath Rolling Method)

  • 이성희
    • 한국분말재료학회지
    • /
    • 제9권3호
    • /
    • pp.153-160
    • /
    • 2002
  • A nitrogen gas atomized aluminum powder was consolidated by powder-in sheath rolling method. A pure aluminum tube with outer diameter of 12 mm and wall thickness of 1mm was used as a sheath. The aluminum tube filled with the aluminum powder, first, was cold-rolled to the thickness of 6mm for performing, and then consolidated by the cold rolling and/or subsequent hot rolling at 360, 460 and $560^{\circ}C$. The aluminum powder compact fabricated by the sheath rolling showed high relative density more than 0.96 at any rolling conditions. The 0.2% proof stress increased with increasing hot rolling reduction and hot rolling temperature. Tensile strength was hardly affected by change in the hot rolling reduction, whereas it decreased with increasing hot rolling temperature. The powder compact showed the large elongation when cold rolling or hot rolling reduction was large. It was found that the sheath rolling was an effective method for consolidation of aluminum powder.

분말시스압연법에 의해 제조된 3vol%CNT 강화 Cu기 복합재료의 미세조직 및 기계적 성질 (Microstructure and Mechanical Properties of 3vol%CNT Reinforced Cu Matrix Composite Fabricated by a Powder in Sheath Rolling Method)

  • 이성희
    • 한국재료학회지
    • /
    • 제30권3호
    • /
    • pp.149-154
    • /
    • 2020
  • A powder-in-sheath rolling method is applied to the fabrication of a carbon nano tube (CNT) reinforced copper composite. A copper tube with outer diameter of 30 mm and wall thickness of 2 mm is used as sheath material. A mixture of pure copper powder and CNTs with a volume content of 3 % is filled in a tube by tap filling and then processed to an 93.3 % reduction using multi-pass rolling after heating for 0.5 h at 400 ℃. The specimen is then sintered for 1h at 500 ℃. The relative density of the 3 vol%CNT/Cu composite fabricated using powder in sheath rolling is 98 %, while that of the Cu powder compact is 99 %. The microstructure is somewhat heterogeneous in width direction in the composite, but is relatively homogeneous in the Cu powder compact. The hardness distribution is also ununiform in the width direction for the composite. The average hardness of the composites is higher by 8Hv than that of Cu powder compact. The tensile strength of the composite is 280 MPa, which is 20 MPa higher than that of the Cu powder compact. It is concluded that the powder in sheath rolling method is an effective process for fabrication of sound CNT reinforced Cu matrix composites.

분말시스압연법에 의해 제조한 Al/Al2O3 복합재료의 미세조직 및 집합조직 (Microstructures and Texture of Al/Al2O3 Composites Fabricated by a Powder-in Sheath Rolling Method)

  • 이성희;이충효
    • 한국분말재료학회지
    • /
    • 제10권2호
    • /
    • pp.103-107
    • /
    • 2003
  • Aluminum-based $Al/Al_2O_3$ composites were fabricated by a powder-in sheath rolling method. A stainless steel tube with outer diameter of 12 mm and wall thickness of 1 mm was used as a sheath. A mixture of aluminum powder and $Al_2O_3$ particles of which volume content was varied from 5 to 20%, was filled in the tube by tap filling and then rolled by 75% reduction in thickness at ambient temperature. The rolled specimen was then sintered at 56$0^{\circ}C$ for 0.5 h. The mixture of Al powders and $Al_2O_3$ particles was successfully consolidated by the sheath rolling. The $Al/Al_2O_3$ composite fabricated by the sheath rolling showed a recrystallized structure, while unreinforced Al powder compact fabricated by the same procedure showed a deformed structure. The unreinforced Al powder compact was characterized by a deformation (rolling) texture of which main component is {112}<111>, while the $Al/Al_2O_3$ composite showed a mixed texture oi deformation and recrystallization. The sintering resulted in recrystallization in Al powder compact and grain growth in the composite.

분말시스압연법에 의한 CNT 강화 Al기 복합재료의 제조 및 평가 (Fabrication and Evaluation of Carbon Nanotube Reinforced Al Matrix Composite by a Powder-in-sheath Rolling Method)

  • 이성희;홍동민
    • 한국분말재료학회지
    • /
    • 제21권1호
    • /
    • pp.50-54
    • /
    • 2014
  • A powder-in-sheath rolling method was applied to a fabrication of a carbon nano tube (CNT) reinforced aluminum composite. A STS304 tube with an outer diameter of 34 mm and a wall thickness of 2 mm was used as a sheath material. A mixture of pure aluminum powders and CNTs with the volume contents of 1, 3, 5 vol was filled in the tube by tap filling and then processed to 73.5% height reduction by a rolling mill. The relative density of the CNT/Al composite fabricated by the powder-in-sheath rolling decreased slightly with increasing of CNTs content, but exhibited high value more than 98. The grain size of the aluminum matrix was largely decreased with addition of CNTs; it decreased from $24{\mu}m$ to $0.9{\mu}m$ by the addition of only 1 volCNT. The average hardness of the composites increased by approximately 3 times with the addition of CNTs, comparing to that of unreinforced pure aluminum. It is concluded that the powder-in-sheath rolling method is an effective process for fabrication of CNT reinforced Al matrix composites.

분말시스압연법에 의해 제조된 Al/Al2O3 복합재료의 기계적 성질 (Mechanical Properties of Al/Al2O3 Composite Fabricated by a Powder-in Sheath Rolling Method)

  • 이성희;이충효
    • 한국분말재료학회지
    • /
    • 제10권2호
    • /
    • pp.97-102
    • /
    • 2003
  • The powder-in sheath rolling was applied to the fabrication of $Al/Al_2O_3$ composite. A stainless steel tube with outer diameter of 12 mm and wall thickness of 1 mm was used as a sheath. Mixture of aluminum powder and $Al/Al_2O_3$ particles of which volume content was varied from 5 to 20 vol.% was filled in the tube by tap filling and then rolled to 75% reduction at ambient temperature. The re]]ed specimen was sintered at 56$0^{\circ}C$ for 0.5 hr. The $Al/Al_2O_3$ composite fabricated by the sheath rolling and subsequent sintering showed the relative density higher than 0.96. The tensile strength of the composite increased with the volume content of $Al_2O_3$ particles, and it reached a maximum of 90 MPa which is 1.5 times higher than unreinforced material. The elongation decreased with the volume content of $Al_2O_3$ particles. It is concluded that the powder-in sheath rolling is an effective method for fabrication of $Al/Al_2O_3$ composite.

분말시스압연법에 의한 5 vol%CNT/Al 복합재료의 제조 및 평가 (Fabrication and Evaluation of 5 vol%CNT/Al Composite Material by a Powder in Sheath Rolling Method)

  • 홍동민;김우진;이성희
    • 한국재료학회지
    • /
    • 제23권11호
    • /
    • pp.607-612
    • /
    • 2013
  • A powder in sheath rolling method was applied to the fabrication of a carbon nano tube (CNT) reinforced aluminum composite. A 6061 aluminum alloy tube with outer diameter of 31 mm and wall thickness of 2 mm was used as a sheath material. A mixture of pure aluminum powder and CNTs with a volume content of 5% was filled in the tube by tap filling and then processed to an 85% reduction using multi-pass rolling after heating for 0.5 h at $400^{\circ}C$. The specimen was then further processed at $400^{\circ}C$ by multi-pass hot rolling. The specimen was then annealed for 1 h at various temperatures that ranged from 100 to $500^{\circ}C$. The relative density of the 5vol%CNT/Al composite fabricated using powder in sheath rolling increased with increasing of the rolling reduction, becoming about 97% after hot rolling under 96 % total reduction. The relative density of the composite hardly changed regardless of the increasing of the annealing temperature. The average hardness also had only slight dependence on the annealing temperature. However, the tensile strength of the composite containing the 6061 aluminum sheath decreased and the fracture elongation increased with increasing of the annealing temperature. It is concluded that the powder in sheath rolling method is an effective process for fabrication of CNT reinforced Al matrix composites.

분말피복압연법에 의해 제조된 (SiC)p/Al 복합재료의 미세조직 및 기계적 성질 (Microstructure and Mechanical Properties of (SiC)p/Al Composite Fabricated by a Powder-in Sheath Rolling Method)

  • 이성희;이충효
    • 한국분말재료학회지
    • /
    • 제11권3호
    • /
    • pp.259-264
    • /
    • 2004
  • Aluminum based metal matrix composite reinforced with SiC particles was fabricated by the powder-in sheath rolling method. A stainless steel tube with outer diameter of 12 mm and wall thickness of 1mm was used as a sheath. Mixture of aluminum powder and SiC particles of which volume content was varied from 5 to 20vol.% was filled in the tube by tap filling and then rolled to 75% reduction at ambient temperature. The rolled specimen was sintered at 56$0^{\circ}C$ for 0.5hr. The tensile strength of the (SiC)$_{p}$/Al composite increased with the volume content of SiC particles, and at 20vol.% it reached a maximum of 100㎫ which is 1.6 times higher than unreinforced material. The elongation decreased with the volume content of $Al_{2}$O$_{3}$ particles. The mechanical properties of the (SiC)$_{p}$/Al composite fabricated by the powder-in sheath rolling is compared with that of (Al$_{2}$O$_{3}$)$_{p}$/Al composite by the same process.ess.

구리튜브를 피복재로 이용한 분말시스압연법에 의해 제조된 CNT/Al 복합재료의 미세조직 및 기계적 특성 (Microstructure and Mechanical Properties of CNT/Al Composite Fabricated by a Powder-in-Sheath Rolling Method utilizing Copper Tube as a Sheath)

  • 이성희
    • 한국분말재료학회지
    • /
    • 제21권5호
    • /
    • pp.343-348
    • /
    • 2014
  • A powder-in-sheath rolling (PSR) process utilizing a copper alloy tube was applied to a fabrication of a multi-walled carbon nanotube (CNT) reinforced aluminum matrix composite. A copper tube with an outer diameter of 30 mm and a wall thickness of 2 mm was used as a sheath material. A mixture of pure aluminum powders and CNTs with the volume contents of 1, 3, 5 vol% was filled in the tube by tap filling and then processed to 93.3% height reduction by a rolling mill. The relative density of the CNT/Al composite fabricated by the PSR decreased slightly with increasing of CNTs content, but showed high value more than 98%. The average hardness of the 5%CNT/Al composite increased more than 3 times, compared to that of unreinforced pure Al powder compaction. The hardness of the CNT/Al composites was some higher than that of the composites fabricated by PSR using SUS304 tube. Therefore, it is concluded that the type of tube affects largely on the mechanical properties of the CNT/Al composites in the PSR process.

분말피복압연법에 의해 제조된 Al/Al2O3 복합재료의 가공열처리후의 기계적 성질 및 집합조직 (Mechanical Properties and Texture after Thermomechanical Treatment of Al/Al2O3 Composite Fabricated by Powder-in Sheath Rolling Method)

  • 이성희;이충효
    • 한국분말재료학회지
    • /
    • 제10권4호
    • /
    • pp.235-240
    • /
    • 2003
  • The $Al/Al_2O_3$ composites fabricated by powder in sheath rolling method were cold-rolled by 50% reduction and annealed for 1.8 ks at various temperatures ranging from 200 to 50$0^{\circ}C$, for improvement of the mechanical properties. The mechanical properties and texture of the composites after rolling and annealing were investigated. The tensile strength of the composites increased significantly due to work hardening after cold rolling, however it decreased due to restoration after annealing. The strength of the composites was improved by thermo mechanical treatment. On the other hand, the texture evolution with annealing temperatures wa,i different between the unreinforced material and the composites. The unreinforced material showed a deformation (rolling) texture of which main component is {112}<111> at annealing temperatures up to 30$0^{\circ}C$. However, the composites have already exhibited a recrystallization texture of which main component is {001}<100> after annealing at 20$0^{\circ}C$. This proves that the critical temperature for recrystailization is lower in the composites than in the unreinforced ones.

분말피복압연법에 의해 제조된 Al 분말성형체의 반복겹침접합압연 (Accumulative Roll-Bonding of Al Powder Compact Fabricated by a Powder-in Sheath Rolling Method)

  • 이성희
    • 한국분말재료학회지
    • /
    • 제12권1호
    • /
    • pp.30-35
    • /
    • 2005
  • An aluminum powder compact consolidated by a powder-in sheath rolling (PSR) method was severely deformed by accumulative roll-bonding (ARB) process. The ARB process was performed up to 8 cycles at ambient temperature without lubrication. Optical microscope and transmission electron microscope observations revealed that microstructure of the ARB-processed Al powder compact is inhomogeneous in the thickness direction. The ultra-fine subgrains often reported in the ARB-processed bulky materials were also developed near surface of the Al powder compacts in this study. Tensile strength of the ARB-processed Al powder compact increased at the 1st cycle, but from the 2nd cycle it rather decreased slightly.