DOI QR코드

DOI QR Code

Accumulative Roll-Bonding of Al Powder Compact Fabricated by a Powder-in Sheath Rolling Method

분말피복압연법에 의해 제조된 Al 분말성형체의 반복겹침접합압연

  • Lee, Seong-Hee (Department of Advanced Materials Science and Engineering, College of Engineering, Mokpo National University)
  • Published : 2005.02.01

Abstract

An aluminum powder compact consolidated by a powder-in sheath rolling (PSR) method was severely deformed by accumulative roll-bonding (ARB) process. The ARB process was performed up to 8 cycles at ambient temperature without lubrication. Optical microscope and transmission electron microscope observations revealed that microstructure of the ARB-processed Al powder compact is inhomogeneous in the thickness direction. The ultra-fine subgrains often reported in the ARB-processed bulky materials were also developed near surface of the Al powder compacts in this study. Tensile strength of the ARB-processed Al powder compact increased at the 1st cycle, but from the 2nd cycle it rather decreased slightly.

Keywords

References

  1. I. J. Palmear: Light Alloys, Arnold, Butterworth-Heinemann Press, London (1995) 325
  2. Y. Genma, Y. Tsunekawa, M. Okumiya and N. Mohri: Materials Transactions, JIM, 38 (1997) 232 https://doi.org/10.2320/matertrans1989.38.232
  3. K. Ohori, H. Watanabe and Y. Takeuchi: Mater. Sci. & Tech., 3 (1987) 57 https://doi.org/10.1179/mst.1987.3.1.57
  4. N. C. Kothari: Powder Metall. Int., 18 (1986) 321
  5. S. H. Hong and K. H. Chung: Mater. Sci. Eng., A194 (1995) 165 https://doi.org/10.1016/0921-5093(94)09676-7
  6. W. F. Wang: Powder Metall., 38 (1995) 289 https://doi.org/10.1179/pom.1995.38.4.289
  7. S. H. Lee: J. Korean Powder Metall. Inst., 9 (2002) 153 (Korean) https://doi.org/10.4150/KPMI.2002.9.3.153
  8. S. H. Lee and C. H. Lee: J. Korean Powder Metall. Inst., 10 (2003) 97 (Korean) https://doi.org/10.4150/KPMI.2003.10.2.097
  9. S. H. Lee and C. H. Lee: J. Korean Powder Metall. Inst., 10 (2003) 103 (Korean) https://doi.org/10.4150/KPMI.2003.10.2.103
  10. R. Z. Valiev, N. A. Krasilnikov and N. K. Tsenev: Mater. Sci. Eng., A137 (1991) 35.
  11. R. Z. Abdulov, R. Z. Valiev and N. A. Krasilnilov: Mater. Sci. Lett., 9 (1990) 1445 https://doi.org/10.1007/BF00721611
  12. Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai: Acta Mater., 47 (1999) 579 https://doi.org/10.1016/S1359-6454(98)00365-6
  13. Y. Saito, H. Utsunomiya and H. Suzuki: Proc. Inst. Mech. Eng. Ser. B, 215 (2001) 947 https://doi.org/10.1243/0954405011518854
  14. J. Y. Huang, Y. T. Zhu, H. Jiang and T. C. Lowe: Acta Mater., 49 (2001) 1497 https://doi.org/10.1016/S1359-6454(01)00069-6
  15. N. Tsuji, Y. Ito, Y. Saito and Y. Minamino: Scripta Mater., 47 (2002) 893 https://doi.org/10.1016/S1359-6462(02)00282-8
  16. S. H. Lee, Y. Saito, T. Sakai and H. Utsunomiya, Mater. Sci. Eng., A325 (2002) 228 https://doi.org/10.1016/S0921-5093(01)01416-2
  17. N. Tsuji, Y. Saito, H. Utsunomiya and S. Tanigawa: Scripta Mater., 40 (1999) 795 https://doi.org/10.1016/S1359-6462(99)00015-9
  18. S. H. Lee, S. J. Hahn and C. Y. Lim: J. Copper Tech., 19 (2004) 13 (Korean)
  19. S. H. Lee, Y. Saito, N. Tsuji, H. Utsunomiya and T. Sakai: Scripta Mater., 46 (2002) 281 https://doi.org/10.1016/S1359-6462(01)01239-8