• Title/Summary/Keyword: Powder packing

Search Result 105, Processing Time 0.023 seconds

Effect of TiCN/WC Ratio on Grain Shape and Grain Growth in the TiCN-WC-Co System (TiCN-WC-Co 계에서 TiCN/WC 비의 변화에 따른 입자모양과 입자 성장)

  • 이보아;강석중;윤덕용;김병기
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.11a
    • /
    • pp.29-29
    • /
    • 2002
  • 공구강 등 산업용 재료로 널리 사용되는 카바이드 계 재료는 입자 크기 및 분포에 따라 기계적 성질이 변화하므로, 이를 제어하고 조절하는 기술에 관하여 많은 연구가 진행되어 왔다. 본 연구에서는 TiCN-WC-Co 복합초경계 에서 소결 공정 및 조성변화에 따른 입자 모양을 관찰하고 이에 따른 업자 성장 거동을 고찰하였다. 일반적으로 입자 조대화 양상과 고상 입자의 모양과는 밀접한 관계가 있다. 각진 입자의 경우에 는 계면이 원자적으로 singular 하여 원자의 홉착이 어렵기 때문에 임계값 이상의 성장 구동력을 받 는 몇몇 입자만 성장하는 비정상 입자 성장이 일어날 수 있다. 반면에 계면이 rough한 퉁큰 엽자의 경우에는 원자 홉착에 필요한 구동력이 존재하지 않아 성장 구동력을 받는 모든 입자들이 성장하기 때문에 정상 입자 성장을 하게 된다. 이와 같이 입자 모양에 따른 입자 성장 거동은 전체 미세구조를 결정하게 되며, 이에 따른 물리 화학적 물성을 변화시킨다. 이러한 입자 성장 원리를 적용하 면 복합초경계 (TiCN-WC-Co)에서도 입자성장이 억제되고 치밀한 소결체를 제조할 수 있을 것이다. 본 실험에서는 평균입도가 각각 0.1, 1.33, 2$\mu\textrm{m}$인 TiCN, WC, Co 분말을 사용하여 $((I00_{-x)}TiCN+_xWC)-30Co$ (wt%) 조성에서 TiCN/WC 비를 변화시키면서 업자 모양과 입자성장 거동을 관찰하였다. 청량된 분말은 WC 초경 볼로 밀렁하고, 건조한 후, 100 mesh 체로 조립화 하였다. 이 분말을 100 MPa의 압력으로 냉간정수압성형 하고 $10^{-2}$ torr의 진공분위기의 graphite f furnace에서 carbon black으로 packing 하여 액상형성 온도 이상에서 소결하였다. 소결된 시편은 경면 연마하여 주사전자현미경으로 미세 조직을 관찰하였다. TiCN-30Co 조성 시편은 corner-round 모양의 입자 모양으로 소결 시간 증가에 따라 빠른 입자 성장을 나타내었다 .(7STiCN+2SWC)-30Co 조성 시변의 경우 일반적으로 보고된 바와 같이 core/shell 구조를 나타내었으며, core는 TiC-rich 상이었고, shell은 (Ti,W)(C,N) 복합 탄화물 상이었다. WC 함량이 중가함에 따라 입자의 corner-round 영역이 증가하였으며 (SOTiCN-SOWC)-30Co 조성 근처에서는 거의 둥근 형태의 입자 모양을 나타내었다. 또한 TiCN - 30Co 조성 시편에 비하여 WC가 첨가된 시펀들은 작은 평균입자크기를 나타내었다. 본 연구의 결과는 shell 영역 조성 변화는 계면에너지 이방성과 기지상 내의 펑형 입자 모양을 변화시키고 나아가 입자 성장 속도 에도 영향을 미친다는 것을 보여준다.

  • PDF

Study of Stability in the Riboflavin Content of Dietary Supplements on Storage Conditions (국내유통 비타민보충용제품의 저장조건에 따른 비타민 $B_{2}$의 안정성에 관한 연구)

  • Kim So-Hee;Kim Ji-Yeon;Lee Young-Ja
    • Journal of Food Hygiene and Safety
    • /
    • v.20 no.4
    • /
    • pp.225-231
    • /
    • 2005
  • This study was carried out to observe the stability of riboflavin in dietary supplements. Dietary supplements were in the type of tablet, powder, capsule and liquid. Various factors on the stability of riboflavin such as effect of light, storage temperature and time were examined using HPLC method. Samples were exposed to various temperatures (-9, 4, $30^{\circ}C$) and light at room temperature far 9 months. As well as storage period became longer, reduction rate constant of riboflavin increased. Riboflavin reduction rate constants were higher during storage with light than without light. And there was a significant difference of reduction rate constants in types of dietary supplement. In other words, riboflavin in tablet types was significantly more stable than the others, and liquid type was the most unstable. Therefore, type, light, and packing container of dietary supplements containing riboflavin would be considered in order to establish their appropriate shelf lives. In consideration with riboflavin decrease in dietary supplements, riboflavin would be appropriate for the nutritional labelling guide when predicting them at the end of shelf lives.

Hybrid Water Treatment of Carbon Ultrafiltration Membrane and Polypropylene Beads Coated with Photocatalyst: Effect of Organic Materials, Photo-oxidation, and Adsorption in Water Back-flushing (탄소 한외여과막 및 광촉매 코팅 폴리프로필렌 구의 혼성 수처리: 물 역세척 시 유기물 및 광산화, 흡착의 영향)

  • Park, Jin Yong;Jung, Chung Ho
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.359-368
    • /
    • 2012
  • For hybrid water treatment of high turbidity water, we used the hybrid module that was composed of photocatalyst packing between tubular membrane outside and module inside. Photocatalyst was PP (polypropylene) bead coated with $TiO_2$ powder by CVD (chemical vapor deposition) process. Water back-flushing of 10 sec was performed per every period of 10 min to minimize membrane fouling for modified solution was prepared with humic acid and kaolin. Resistance of membrane fouling ($R_f$) decreased as humic acid concentration changed from 10 mg/L to 2 mg/L, and finally the highest total permeate volume ($V_T$) could be obtained at 2 mg/L, which was the same with the previous results. Then, treatment efficiencies of turbidity and humic acid were above 98.9% and 88.7%, respectively. As results of treatment portions of UF, UF + $TiO_2$, and UF + $TiO_2$ + UV processes, turbidity was treated little by photocatalyst adsorption, and photo-oxidation. However, treatment portions of humic acid by adsorption and photo-oxidation were 2.5% and 12.3%, respectively. Compared with the previous results, treatment portions of humic acid by adsorption and photo-oxidation were different depending on membrane material and pore size. As simplified the process, the membrane fouling resistance after 180 minutes' operation ($R_{f,180}$) increased and the final permeate flux decreased a little.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Photocatalyst and Ceramic Microfiltration: Effect of Organic Materials in Water-back-flushing (광촉매 및 세라믹 정밀여과 혼성공정에 의한 고탁도 원수의 고도정수처리: 물 역세척시 유기물의 영향)

  • Park, Jin-Yong;Lee, Gwon-Seop
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.72-83
    • /
    • 2011
  • For advanced drinking water treatment of high turbidity water, we used the hybrid module that was composed of photocatalyst packing between outside of tubular ceramic microfiltration membrane and membrane module inside. Photocatalyst was PP (polypropylene) bead coated $TiO_2$ powder by CVD (chemical vapor deposition) process. Instead of natural organic matters (NOM) and fine inorganic particles in natural water source, modified solution was prepared with humic acid and kaolin. Water-back-flushing of 10 sec was performed per every period of 10 min to minimize membrane fouling. Resistance of membrane fouling ($R_f$) decreased and J increased as concentration of humic acid changed from 10 mg/L to 2 mg/L, and finally the highest total permeate volume ($V_T$) could be obtained at 2 mg/L. Then, treatment efficiencies of turbidity and $UV_{254}$ absorbance were above 98.5% and 85.7%, respectively. As results of treatment portions by membrane filtration, photocatalyst adsorption, and photo-oxidation in MF, MF + $TiO_2$, and MF + $TiO_2$ + UV processes, turbidity was treated little by photocatalyst adsorption, and photo-oxidation. However, treatment portions of humic acid by adsorption and photo-oxidation were above 10.7 and 8.6%, respectively.

Treatment of Malodorous Waste Air Containing Ammonia Using Biofilter System (바이오필터시스템을 이용한 암모니아 함유 악취폐가스 처리)

  • Lee, Eun Ju;Park, Sang Won;Nam, Dao Vinh;Chung, Chan Hong;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.391-396
    • /
    • 2010
  • In this research the characteristics of ammonia removal from malodorous waste-air were investigated under various operating condition of biofiilter packed with equal volume of rubber media and compost for the efficient removal of ammonia, representative source of malodor frequently generated at compost manufacturing factory and publicly owned facilities. Then the optimum conditions were constructed to treat waste-air containing ammonia with biofilter. Biofilter was run for 30 days(experimental frequency of 2 times/day makes 60 experimental times.) with the ammonia loading from $2.18g-N/m^3/h$ to $70g-N/m^3/h$ at $30^{\circ}C$. The ammonia removal efficiency reached almost 100% for I through IV stage of run to degrade up to the ammonia loading of $17g-N/m^3/h$. However the removal efficiency dropped to 80% when ammonia loading increased to $35g-N/m^3/h$, which makes the elimination capacity of ammonia $28g-N/m^3/h$ for V stage of run. However, the removal efficiency remained 80% and the maximum elimination capacity reached $55g-N/m^3/h$ when ammonia loading was doubled $70g-N/m^3/h$ for VI stage of run. Thus the maximum elimination capacity exceeded $1,200g-N/m^3/day$(i.e., $50g-N/m^3/h$) of the experiment of biofilter packed with rock wool inoculated with night soil sludge by Kim et al.. However, the critical loading did not exceed $810g-N/m^3/day$ (i.e., $33.75g-N/m^3/h$) of the biofilter experiment by Kim et al.. The reason to exceed the maximum elimination capacity of Kim et al. may be attributed to that the rubber media used as biofilter packing material provide the better environment for the fixation of nitrifying and denitrification bacteria to its surface coated with coconut based-activated carbon powder and well-developed inner-pores, respectively.