• Title/Summary/Keyword: Powder atomization

Search Result 148, Processing Time 0.021 seconds

A Study on the Microstructures and Properties of $Al-SiC)_p$ Metal Matrix Composites Fabricated by Spray Forming Process (분무성형법에 의해 제조된 $Al-SiC)_p$ 금속기 복합재료의 미세조직과 성질에 관한 연구)

  • 김춘근
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.42-51
    • /
    • 1994
  • 6061Al-SiCP metal matrix composite materials(MMCs) were fabricated by injecting SiCP particles directly into the atomized spray. The main attraction of this technique is the rapid fabrication of semi-finished, composite products in a combined atomization, particulate injection(10 $\mu\textrm{m}$, 40 $\mu\textrm{m}$, SiCP) and deposition operation. Conclusions obtained are as follows; The microstructure of the unreinforced spray formed 6061Al alloy consisted of relatively fine(50 $\mu\textrm{m}$) equiaxed grains. By comparision, the microstructure of the I/M materials was segregated and consisted of relatively coarse(150 $\mu\textrm{m}$) grains. The probability of clustering of SiCP particles in co-sprayed metal matrix composites increased it ceramic particle size(SiCP) was reduced and the volume fraction was held constant. Analysis of overspray powders collected from the spray atomization and deposition experiments indicated that morphology of powders were nearly spherical and degree of powders sphercity was deviated due to composite with SiCp particles. Interfacial bonding between matrix and ceramics was improved by heat treatment and addition of alloying elements(Mg). Maximum hardness values [Hv: 165 kg/mm2 for Al-10 $\mu\textrm{m}$ SiCp Hv--159 kg/mm2 for Al-40 $\mu\textrm{m}$SiCp] were obtained through the solution heat treatment at $530^{\circ}C$ for 2 hrs and aging at $178^{\circ}C$, and there by the resistance were improved.

  • PDF

Characteristics of Plasma Electrolytic Oxidation Coatings on Mg-Zn-Y Alloys Prepared by Gas Atomization (가스 분사법으로 제조한 Mg-Zn-Y 합금의 플라즈마 전해 산화 피막 특성에 관한 연구)

  • Chang, Si-Young;Cho, Han-Gyoung;Lee, Du-Hyung;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.372-379
    • /
    • 2007
  • The microstructure, mechanical and electrochemical properties of plasma electrolytic coatings (PEO) coatings on Mg-4.3 wt%Zn-1.0 wt%Y and Mg-1.0 wt%Zn-2.0 wt%Y alloys prepared by gas atomization, followed by compaction at 320 for 10 min under the pressure of 700 MPa and sintering at 380 and 420 respectively for 24 h, were investigated, which was compared with the cast Mg-1.0 wt%Zn alloy. All coatings consisting of MgO and $Mg_2SiO_4$ oxides showed porous and coarse surface features with some volcano top-like pores distributed disorderly and cracks between pores. In particular, the surface of coatings on Mg-1.0 wt%Zn-2.0 wt%Y alloy showed smaller area of pores and cracks compared to the Mg-4.3 wt%Zn-1.0 wt%Y and Mg-1.0 wt%Zn alloys. The cross section micro-hardness of coatings on the gas atomized Mg-Zn-Y alloys was higher than that on the cast Mg-1.0 wt%Zn alloy. Additionally, the coated Mg-1.0 wt%Zn-2.0 wt%Y alloy exhibited the best corrosion resistance in 3.5%NaCl solution. It could be concluded that the addition of Y has a beneficial effect on the formation of protective and hard coatings on Mg alloys by plasma electrolytic oxidation treatment.

The Effect of In-flight Bulk Metallic Glass Particle Temperature on Impact Behavior and Crystallization

  • Kim, Soo-Ki;Yoon, Sang-Hoon;Lee, Chang-Hee
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.242-243
    • /
    • 2006
  • NiTiZrSiSn bulk metallic glass powder was produced using inert gas atomization and then was sprayed onto a SS 41 mild steel substrate using the kinetic spraying process. Through this study, the effects of thermal energy of in-flight particle and crystallization degree by powder preheating temperature were evaluated. The deformation behavior of bulk metallic glass is very interesting and it is largely dependent on the temperature. The crystalline phase formation at impact interface was dependent on the in-flight particle temperature. In addition, variations in the impact behavior need to be considered at high strain rate and in-flight particle temperature.

  • PDF

Characteristics of Pure Mg Powder Compacts Prepared by Spark Plasma Sintering Process (방전플라즈마 소결법으로 제작된 순 마그네슘 분말 소결체의 특성평가)

  • Hong, Ji-Min;Son, Hyeon-Taek;Chang, Se-Hun;Lee, Jae-Seoul;Cha, Yong-Hun;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.17 no.6
    • /
    • pp.331-336
    • /
    • 2007
  • The pure Mg powder compacts were successfully fabricated using SPS process. The machined chip powder showed flake shaped morphology with coarse surfaces, while gas atomized powders were spherical in morphology with smooth surfaces. In this study, SPS process was used to consolidate the pure Mg powder because this process allows high density consolidation in a short time. The results showed that increased sintering temperature from $350^{\circ}C$ to $500^{\circ}C$ with pressure of 30MPa, the maximum values of the density was increased from 98.1% to 99.8% of theoretical density, respectively. However, density of the sintered chip powders was higher than that of gas-atomized powder due to larger contact areas between particles.

Magnetic Properties of NixFe100-x(x=40~50) Permalloy Powders and Dust Cores Prepared by Gas-Atomization (가스 분무법으로 제조된 NixFe100-x(x=40~50) 퍼멀로이 분말 및 압분 코아의 자기적 특성)

  • Noh, T.H.;Kim, G.H.;Choi, G.B.;Kim, K.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.6
    • /
    • pp.218-223
    • /
    • 2002
  • We investigated the magnetic properties of High Flux-type $Ni_{x}Fe_{100-x}$(x=40∼50, wt.%) permalloy powders and dust cores. The powder was prepared by conventional gas atomization in mass production scale. At the composition of $Ni_{x}Fe_{55}$, saturation magnetization was maximum. In case of lower Ni content than X=45, the $M_{s}$, decreased largely with the decrease in Ni content, which is due to the invar effect. The permeability of compressed powder cores increased with the decrease in Ni content, which was considered to be due to the decrease in the magnetostriction. In addition, the dust core with Ni=45% showed the lowest core loss because of the increase in electrical resistivity leading to the low eddy current loss. From the better frequency dependence of permeability, larger Q value and superior DC bias characteristics of Ni=45% than those of Ni=50% core, it was confirmed that the 45%Ni-55%Fe powder alloy was better material for the dust core than commercial High Flux core materials.

Microstructure and Soft Magnetic Properties of Fe-6.5 wt.%Si Sheets Fabricated by Powder Hot Rolling

  • Kim, Myung Shin;Kwon, Do Hun;Hong, Won Sik;Kim, Hwi Jun
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.122-127
    • /
    • 2017
  • Fe-6.5 wt.% Si alloys are widely known to have excellent soft magnetic properties such as high magnetic flux density, low coercivity, and low core loss at high frequency. In this work, disc-shaped preforms are prepared by spark plasma sintering at 1223 K after inert gas atomization of Fe-6.5 wt.% Si powders. Fe-6.5 wt.% Si sheets are rolled by a powder hot-rolling process without cracking, and their microstructure and soft magnetic properties are investigated. The microstructure and magnetic properties (saturation magnetization and core loss) of the hot-rolled Fe-6.5 wt.% Si sheets are examined by scanning electron microscopy, electron backscatter diffraction, vibration sample magnetometry, and AC B-H analysis. The Fe-6.5 wt.% Si sheet rolled at a total reduction ratio of 80% exhibits good soft magnetic properties such as a saturation magnetization of 1.74 T and core loss ($W_{5/1000}$) of 30.7 W/kg. This result is caused by an increase in the electrical resistivity resulting from an increased particle boundary density and the oxide layers between the primary particle boundaries.

Microstructure and Consolidation of Gas Atomized Al-Si Powder

  • Hong, S.J.;Lee, M.K.;Rhee, C.K.;Chun, B.S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.994-995
    • /
    • 2006
  • The microstructure of the extruded Al-20Si bars showed a homogeneous distribution of eutectic Si and primary Si particles embedded in the Al matrix. The grain size of ${\alpha}-Al$ varied from 150 to 600 nm and the size of the eutectic Si and primary Si in the extruded bars was about 100 - 200 nm. The room temperature tensile strength of the alloy with a powder size $<26{\mu}m$ was 322 MPa, while for the coarser powder ($45-106{\mu}m$) it was 230 MPa. With decreasing powder size from $45-106{\mu}m$ to $<26{\mu}m$, the specific wear of all the alloys decreased significantly at all sliding speeds due to the higher strength achieved by ultrafine-grained constituent phases. The fracture mechanism of failure in tension testing and wear testing was also studied.

  • PDF

Analysis Mechanism of Roll Forming Manufacturing Process using HIP (Hot Isostatic Press) Process (HIP(열간 등방압) 공정을 이용한 압연 롤 제조 공정의 해석 메커니즘)

  • W. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.114-121
    • /
    • 2023
  • During rolling, rolling mill rolls endure wear when shaping metal billets into a desired form, such as bars, plates, and shapes. Such wear affects the lifespan of the rolls and product quality. Therefore, in addition to rigidity, wear performance is a key factor influencing the performance of rolling mill rolls. Conventional methods such as casting and forging have been used to manufacture rolling mill rolls. However, powder alloying methods are increasingly being adopted to enhance wear resistance. These powder manufacturing methods include atomization, canning to shape the powder, hot isostatic pressing to combine the powder alloy with conventional metals, and various wear performance tests on rolls prepared with powder alloys. In this study, numerical simulations and experimental tests were used to develop and elucidate the wear analysis mechanism of rolling mill rolls. The wear characteristics of the rolls under various rolling conditions were analyzed. In addition, experimental tests (wear and surface analysis tests) and wear theory (Archard wear model) were used to evaluate wear. These tests were performed on two different materials in various powder states to evaluate the different aspects of wear resistance. In particular, this study identifies the factors influencing the wear behavior of rolling mill rolls and proposes an analytical approach based on the actual production of products. The developed wear analysis mechanism can serve the future development of rolls with high wear resistance using new materials. Moreover, it can be applied in the mechanical and wear performance testing of new products.

A Study on the High-Efficiency Atomisation Molten Materials (PART 2 : A Study on the Mechanism of Liquid Supplying and Film Formation by Applying the Ejector Principle) (Atomize법에 의한 용융소재의 고효율 미세화에 관한 연구(제2보 : 이젝터의 원리를 이용한 액체노즐의 액체공급 및 액막생성 기구와 특성))

  • Oh, J.G.;Cho, I.Y.
    • Journal of ILASS-Korea
    • /
    • v.3 no.2
    • /
    • pp.14-23
    • /
    • 1998
  • The negative pressure as much as 10's mmHg is demanded at nozzle inside, in case of atomizing the large density molten materials. by conventional air jet nozzle. In this study, suction type fluid nozzle is designed by applying the ejector principle in order to clarify the air flow of nozzle inside, mechanism of liquid suction and liquid film formation. The results of this experimental study areas follows. Suction force of liquid is magnified by using liquid nozzle, and it is able to supply the liquid stable. Negative pressure at nozzle inside is varied by throttle angle of liquid nozzle, position and outer diameter of air jet nozzle, and have a influence on liquid suction quantity and liquid film formation.

  • PDF

DEVELOPMENT OF HIGH-DENSITY U/AL DISPERSION PLATES FOR MO-99 PRODUCTION USING ATOMIZED URANIUM POWDER

  • Ryu, Ho Jin;Kim, Chang Kyu;Sim, Moonsoo;Park, Jong Man;Lee, Jong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.979-986
    • /
    • 2013
  • Uranium metal particle dispersion plates have been proposed as targets for Molybdenum-99 (Mo-99) production to improve the radioisotope production efficiency of conventional low enriched uranium targets. In this study, uranium powder was produced by centrifugal atomization, and miniature target plates containing uranium particles in an aluminum matrix with uranium densities up to 9 $g-U/cm^3$ were fabricated. Additional heat treatment was applied to convert the uranium particles into UAlx compounds by a chemical reaction of the uranium particles and aluminum matrix. Thus, these target plates can be treated with the same alkaline dissolution process that is used for conventional $UAl_x$ dispersion targets, while increasing the uranium density in the target plates.