• Title/Summary/Keyword: Powder alloying process

Search Result 147, Processing Time 0.028 seconds

Solid-state Synthesis of $Mg_2X$ (X=Si, Ge, Sn and Pb) via Bulk Mechanical Alloying

  • Aizawa, Tatsuhiko;Song, Renbo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.831-832
    • /
    • 2006
  • Solid-state processing via the bulk mechanical alloying enables us to directly fabricate $Mg_2X$ semi-conductive material performs. Precise control of chemical composition leads to investigation on the dilution and enrichment of X in $Mg_2X$. Two types of solid-state reactivity are introduced: e.g. synthesis of $Mg_2Si$ from elemental mixture Mg-Si is nucleation-controlled process while synthesis of $Mg_2Sn$ from Mg-Sn, diffusion-controlled process. Thermoelectricity of these $Mg_2X$ is evaluated for discussion on the validity and effectiveness of this new PM route as a reliable tool for fabrication of thermoelectric compounds.

  • PDF

Formation of $Fe_3AlC$ Base Alloy by Mechanical Alloying and Vacuum Hot Pressing

  • Isonishi, Kazuo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1290-1291
    • /
    • 2006
  • Fabrication of $Fe_3AlC$ matrix in-situ composite, reinforced by a FeAl phase, was studied by using the powder metallurgical processing route. Especially, in order to disperse the second phase more finely, we chose the mechanical alloying process. We investigated the microstructural and mechanical properties of the consolidated material. After consolidation by vacuum hot pressing, the compact showed almost full density and consisted of a $Fe_3AlC$ matrix and FeAl second phase (average particle size was less than 1m). The compact showed HV746, which was higher than that of the arc melted $Fe_3AlC$ monolithic material, HV603.

  • PDF

Formation and Thermal Properties of Amorphous Ti40Cu40Ni10Al10 Alloy by Mechanical Alloying (Mechanical Alloying에 의한 비정질 Ti40Cu40Ni10Al10 합금의 형성 및 열적특성)

  • Kim, Hyun-Goo
    • Journal of Powder Materials
    • /
    • v.16 no.5
    • /
    • pp.363-369
    • /
    • 2009
  • The amorphization process and the thermal properties of amorphous Ti$_{40}$Cu$_{40}$Ni$_{10}$Al$_{10}$ powder during milling by mechanical alloying were examined by X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The chemical composition of the samples was examined by an energy dispersive X-ray spectrometry (EDX) facility attached to the scanning electron microscope (SEM). The as-milled powders showed a broad peak (2$\theta$ = 42.4$^{\circ}$) with crystalline size of about 5.0 nm in the XRD patterns. The entire milling process could be divided into three different stages: agglomeration (0 < t$_m$ $\leq$ 3 h), disintegration (3 h < t$_m$ $\leq$ 20 h), and homogenization (20 h < t$_m$ $\leq$ 40 h) (t$_m$: milling time). In the DSC experiment, the peak temperature T$_p$ and crystallization temperature T$_x$ were 466.9$^{\circ}C$ and 444.3$^{\circ}C$, respectively, and the values of T$_p$, and T$_x$ increased with a heating rate (HR). The activation energies of crystallization for the as-milled powder was 291.5 kJ/mol for T$_p$.

Thermoelectric Properties of Half-Heusler TiCoSb Synthesized by Mechanical Alloying Process

  • Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.542-545
    • /
    • 2011
  • Half-Heusler alloys are a potential thermoelectric material for use in high-temperature applications. In an attempt to produce half-Heusler thermoelectric materials with fine microstructures, TiCoSb was synthesized by the mechanical alloying of stoichiometric elemental powder compositions and then consolidated by vacuum hot pressing. The phase transformations during the mechanical alloying and hot consolidation process were investigated using XRD and SEM. A single-phase, half- Heusler allow was successfully produced by the mechanical alloying process, but a minor portion of the second phase of the CoSb formation was observed after the vacuum hot pressing. The thermoelectric properties as a function of the temperature were evaluated for the hot-pressed specimens. The Seebeck coefficients in the test range showed negative values, representing n-type conductivity, and the absolute value was found to be relatively low due to the existence of the second phase. It is shown that the electrical conductivity is relatively high and that the thermal conductivities are compatibly low in MA TiCoSb. The maximum ZT value was found to be relatively low in the test temperature range, possibly due to the lower Seebeck coefficient. The Hall mobility value appeared to be quite low, leading to the lower value of Seebeck coefficient. Thus, it is likely that the single phase produced by mechanical alloying process will show much higher ZT values after an excess Ti addition. It is also believed that further property enhancement can be obtained if appropriate dopants are selectively introduced into this MA TiCoSb System.

Effects of the Sintering Variable on Impact Energy in MA 316L ODS and Wet 316L ODS Stainless Steels (MA 316L ODS 및 Wet 316L ODS 스테인리스강에서 충격에너지에 미치는 소결 공정의 영향)

  • Kim, Sung-Soo;Han, Chang-Hee;Jang, Jin-Sung
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.113-122
    • /
    • 2010
  • Two kinds of oxide-dispersion-strengthened (ODS) 316L stainless steel were manufactured using a wet mixing process(wet) and a mechanical alloying method (MA). An MA 316L ODS was prepared by a mixing of metal powder and a mechanical alloying process. A wet 316L ODS was manufactured by a wet mixing with 316L stainless steel powder. A solution of yttrium nitrate was dried after being in the wet 316L ODS alloy. The results showed that carbon and oxygen were effectively reduced during the degassing process before the hydroisostatic process (HIP) in both alloys. It appeared that the effect of HIP treatment on increase in impact energy was pronounced in the MA 316L ODS alloy. The MA 316L ODS alloy showed a higher yield strength and a smaller elongation, when compared to the wet 316L ODS alloy. This seemed to be attributed to the enhancement of bonding between oxide and matrix particles from HIP and to the presence of a finer oxide of about 20 nm from the MA process in the MA 316L ODS alloy.

Analysis on Milling Behavior of Oxide Dispersion Strengthened Ni-based Atomizing Powder with Ni5Y Intermetallic Phase (Ni5Y 합금상이 형성된 Ni계 산화물 분산강화 아토마이징 분말의 밀링 거동 분석)

  • Park, Chun Woong;Byun, Jong Min;Choi, Won June;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.101-106
    • /
    • 2019
  • Ni-based oxide dispersion strengthened (ODS) alloys have a higher usable temperature and better high-temperature mechanical properties than conventional superalloys. They are therefore being explored for applications in various fields such as those of aerospace and gas turbines. In general, ODS alloys are manufactured from alloy powders by mechanical alloying of element powders. However, our research team produces alloy powders in which the $Ni_5Y$ intermetallic phase is formed by an atomizing process. In this study, mechanical alloying was performed using a planetary mill to analyze the milling behavior of Ni-based oxide dispersions strengthened alloy powder in which the $Ni_5Y$ is the intermetallic phase. As the milling time increased, the $Ni_5Y$ intermetallic phase was refined. These results are confirmed by SEM and EPMA analysis on microstructure. In addition, it is confirmed that as the milling increased, the mechanical properties of Ni-based ODS alloy powder improve due to grain refinement by plastic deformation.

Study on the sintering Behavior of Mechanecally Alloyed 75W-25Cu Powder Using a Dilatometry Technique

  • Lee, Seong-;Hong, Moon-Hee;Kim, Eun-Pyo-;Houng-Sub;Noh, Joon-Woong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1992.05b
    • /
    • pp.126-126
    • /
    • 1992
  • Solid and liquid sintering behaviors of mechanically alloyed 75W-25Cu powders have been studied by using a dilatometry technique. The sintering was performed under hydrogen atmosphere of 1 atm with a heating rate of 3 $^{\circ}C$/min. The mechanically alloyed 75W-25Cu powders were prepared by high energy ball milling process under argon atmosphere of 1 atm with alloying times of 0 to 400 h. To compare with the sintering behaviors of mechanically alloyed powders, pure Cu and W powders were also sintered under the above conditions, As the mechanical alloying time increased from 0 to 400 h, the shrinkage behavior of the alloyed powders was enhanced during the sintering, and staring temperature of liquid sintering decreased from 1083 to 1068 $^{\circ}C$. The saturation temperature, above which the shrinkage was completed, of liquid phase sintering decreased from 1248 to 1148 $^{\circ}C$ with increasing mechanical alloying time from 200 to 400 h. The residual stress of the mechanically alloyed powder was measured by X-raydiffractometer. The microstructure of sintered spcimen was observed by optical and scanning electron microscope. From these results, variations of solid and liquid sintering behaviors with mechanical alloying time were discussed in terms of the amount of residual stress and the distribution of W and Cu powders in the mechanically alloyed powder.

  • PDF

Fabrication of Composite Powders by Mechanical Alloying of Magnetite-M (M = Ti, Al) Systems (마그네타이트와 금속(Ti, Al)의 기계적 합금화에 의한 복합분말의 합성)

  • 홍대석;이성희;이충효;김지순;권영순
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.247-252
    • /
    • 2004
  • Recently, it has been found that mechanical alloying (MA) facilitates the nanocomposites formation of metal-metal oxide systems through solid-state reduction during ball milling. In this work, we studied the MA effect of Fe$_{3}$O$_{4}$-M (M = Al, Ti) systems, where pure metals are used as reducing agents. It is found that composite powders in which $Al_{2}$O$_{3}$ and TiO$_{2}$ are dispersed in $\alpha$-Fe matrix with nano-sized grains are obtained by mechanical alloying of Fe$_{3}$O$_{4}$ with Al and Ti for 25 and 75 hours, respectively. It is suggested that the large negative heat associated with the chemical reduction of magnetite by aluminum is responsible for the shorter MA time for composite powder formation in Fe$_{3}$O$_{4}$-Al system. X-ray diffraction results show that the reduction of magnetite by Al and Ti if a relatively simple reaction, involving one intermediate phase of FeAl$_{2}$O$_{4}$ or Fe$_{3}$Ti$_{3}$O$_{10}$. The average grain size of $\alpha$-Fe in Fe-TiO$_{2}$ composite powders is in the range of 30 nm. From magnetic measurement, we can also obtain indirect information about the details of the solid-state reduction process during MA.