• Title/Summary/Keyword: Powder Morphology

Search Result 566, Processing Time 0.026 seconds

INDUCTION PLASMA DEPOSITION TECHNOLOGY FOR NUCLEAR FUEL FABRICATION

  • I. H. Jung;K. K. Bae;Lee, J. W.;Kim, T. K.;M. S. Yang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.216-221
    • /
    • 1998
  • A study on induction plasma deposition with ceramic materials, yttria-stabilized-zirconia ZrO$_2$-Y$_2$O$_3$ (m.p 264O $^{\circ}C$), was conducted with a view developing a new method for nuclear fuel fabrication Before making dense pellets more than 96%TD., the spraying condition was optimized through the process parameters, such as chamber pressure, plasma plate power powder spraying distance, sheath gas composition, probe position, particle size and powders different morphology. The results with a 5mm thick deposit on rectangular planar graphite substrates showed a 97.11% theoretical density when the sheath gas flow rate was Ar/H$_2$120/20 l/min, probe position 8cm, particle size -75 ${\mu}{\textrm}{m}$ and spraying distance 22cm by AMDRY146 powder. The degree of influence of the main effects on density were powder morphology. particle size, sheath gas composition, plate power and spraying distance, in that order. Among the two parameter interactions, the sheath gas composition and chamber pressure affects density greatly. By using the multi-pellets mold wheel type, the pellet density did not exceed 94%T.D., owing to the spraying angle.

  • PDF

Synthesis of $MgB_2$ powders by ultrasonic spray pyrolysis (초음파 분무열분해를 이용한 $MgB_2$ 분말 합성)

  • Park, S.C.;Lim, Y.J.;Kang, S.G.;Chung, J.K.;Kim, C.J.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.19-23
    • /
    • 2008
  • Spherical $MgB_2$ powders was synthesized with the ultrasonic spray pyrolysis(USP) process using aqueous solutions of boron and magnesium ion. The properties of synthesized $MgB_2$ powder were characterized by XRD, SEM and EDS. A small amount of MgO was detected as the secondary phase out of the synthesized powder and the ratios of $MgB_2$ to MgO increased with increasing furnace temperature. The particle size and morphology of $MgB_2$ powder were investigated with varying molar concentration of the boron and magnesium solution and furnace temperature between $600^{\circ}C$ and $1000^{\circ}C$ in $Ar/H_2$. The average particle size of $MgB_2$ showed narrow distribution ranging from 300nm to 400nm. The morphology of particles exhibited mostly spherical shapes and uniform distribution.

The Production of Tantalum Powder by MR and EMR Method (MR법 및 EMR법에 의한 탄탈륨 분말 제조)

  • Bae, In Seong;Park, Hyeoung Ho;Kim, Byung Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.1
    • /
    • pp.16-20
    • /
    • 2002
  • In conventional metallothermic reduction(MR) for obtaining tantalum powder in batch-type operation, it is difficult to control morphology and location of deposits because the reaction occurs by direct physical contact between reductants and feed materials. On the other hand, a electronically mediated reaction(EMR) is capable to overcome these difficulties through the reaction by electron transfer and have a merit of continuous process. In this study an MR and EMR method has been applied to the production of a tantalum powder by sodium reduction of $K_2TaF_7$. As the reduction temperature increases, the particle size and yield of tantalum powder obtained by MR and EMR method is increased.

Evaluation on the Applicability as Filler materials of Ni-Based Super Alloying Nano Size Powder by Pulsed Wire Evaporation(PWE) Method (전기폭발법으로 제조된 니켈기 초내열합금 나노분말의 용가재로의 응용가능성에 관한 평가)

  • Kim, Gyeong-Ho;Lee, Min-Gu;Kim, Gwang-Ho;Lee, Chang-Gyu;Kim, Heung-Hui
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.168-170
    • /
    • 2005
  • Nickel base brazes containing boron and silicon as melting point depressants are used extensively in the joining and repair of hot-section components in next generation nuclear reactor and aero-engine. Therefore, the present study has investigated the preliminary applicability of nickel based alloying nano powders. Nano Ni-based alloying powders synthesized by Pulsed Wire Evaporation (PWE) method. It's powder morphology and phase transformation temperature were analyzed by scanning electron microscopy, transmission electron microscopy, and differential scanning calorimeter(DSC). The powder particle size was approximately 10${\sim}$100nm and exhibits a quite even equiaxed shape. The results of DSC measurement show that both the nano Inconel 625 nano powder and Inconel 718 nano powder presents similar liquidus temperatures approximately $1373^{\circ}C$ and $1380^{\circ}C$ respectively.

  • PDF

Microwave Characteristics of Ferroxplana-Silicone Rubber Composite (Ferroxplana-Silicone Rubber 복합체의 마이크로파 특성)

  • 박효열;김근수;김태옥
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.8
    • /
    • pp.401-406
    • /
    • 2004
  • In this experimentation, we investigated the characteristics of electromagnetic wave absorption of ferroxplana powder and silicone rubber composite. Ferroxplana was prepared by flux method at low temperature. The crystallization, magnetic properties and particle morphology of the obtained ferroxplana powder were investigated by using XRD, VSM and SEM. The particle size of ferroxplana powder was 2∼4$\mu\textrm{m}$ at the ratio of R=26, The coercivity and saturation magnetization of ferroxplana powder increased slightly with increase of temperature, The magnetic loss was the main factor of electromagnetic wave absorption of ferroxplana powder and silicone rubber composite, The maximum reflection loss of composite was about -l5dB below 4GHz.

Study for the Development of Fe-NbC Composites by Advanced PM Techniques

  • Gordo, E.;Gomez, B.;Gonzalez, R.;Ruiz-Navas, E.M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.118-119
    • /
    • 2006
  • The development of Fe-based metal matrix composites (MMCs) with high content of hard phase has been approached by combining the use of advanced powder metallurgy techniques like high-energy milling (HEM), cold isostatic pressing (CIP) and vacuum sinterings. A 30% vol. of NbC particles was mixed with Fe powder by HEM in a planetary mill during 10h, characteristing the powder by the observation of morphology and microstructure by scanning electron microscopy (SEM). After of sintering process the variation of density, hardness,carbon content and the microstructural changes observed, permits to find the optimal conditions of processing. Afterwards, a heat treatment study was performed to study the hardenability of the composite.

  • PDF

Characteristic of Tantalum Powder and Effect of Reaction Temperature on the amount of Diluent (희석제량에 따른 탄탈륨 분말 특성 및 반응온도의 영향)

  • 윤재식;박형호;배인성;정성만;김병일
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.315-321
    • /
    • 2002
  • Pure tantalum powder has been produced by combining Na as a reducing agent, $K_2TaF_{7}$ as feed material, KCl and KF as a diluent in a stainless steel(SUS) bomb, using the method of metallothermic reduction. The present study investigated the effect of the amount of the diluent and reaction temperature on the characteristics of tantalum powder in the production process. The temperature applied in this study $850^{\circ}C$ and the amount of the additional reductant from +5% of the theoretical amount used for the reduction of the entire $K_2TaF_{7}$. The results showed that as the amount of the diluent increased, the reaction temperature became lower because the diluent prevented a temperature rise. Also, according to the mixture ratio of the feed materials and the diluent changed from 1 : 0.25 to 1 : 2, the particle size decreased from $5\mutextrm{m}$ to $1\mutextrm{m}$ and a particle size distribution which is below 325 mesh in fined powder increases from 71% to 83%. The average size of Tantalum powder, $2-4\mutextrm{m}$, was close to that of the commercial powders($2-5\mutextrm{m}$). Also under this condition, impurities contained in the powder were within the range allowed for the commercial Ta powders.

Characteristics of Powder with Amount of Reductant Excess in Production of Tantalum Powder by MR-EMR Combination Process (MR-EMR 복합공정에 의한 탄탈륨분말의 제조시 과잉첨가 환원제 양에 따른 분말의 특성)

  • 배인성;윤재식;박형호;김병일;이현우;김낙찬;설경원
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.333-340
    • /
    • 2004
  • In this study, tantalum powder has been producted by MR-EMR combination process. MR-EMR combination process is a method that is able to improve demerits of MR(metallothermic reduction) and EMR(electronically mediated reaction) process. This study examined the characteristics of powder with the amount of reductant excess using $K_2$TaF$_{7}$ as feed materials, Na as a reductant and KCl/KF as a diluent. In addition, this study examined acid treatment that affect the high purification of powder. The impurities contained in powder was removed in various conditions of acid treatment. The total charge passed through external circuit and average particle size(FSSS) were increased with increasing amount of sodium excess. The proportion of fine particle(-325mesh) was decreased with increasing amount of sodium excess. The yield was improved from 70% to 76% with increasing amount of sodium excess. Considering the impurities, charge, morphology, particle size and yield, an amount of sodium excess of 10wt% were found to be optimum conditions for MR-EMR combination process.s.

TEM Specimen Preparation Method of Gibbsite Powder for Quantitative Structure Analysis (정량 구조 분석을 위한 Gibbsite 분말의 TEM 시편 준비법)

  • Kim, Young-Min;Jeung, Jong-Man;Lee, Su-Jeong;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.32 no.4
    • /
    • pp.311-317
    • /
    • 2002
  • There is great requirement on the TEM specimen preparation method with particle size selectivity as a prerequisite for the quantitative structure analysis on the materials such as gibbsite powder, which generally forms a large agglomerate and shows a variation of transition process depending on their sizes. In this experiment, we made an attempt to give a methodology for the TEM specimen preparation of powder with the size selectivity. After mixing 1 wt% gibbsite powder with ethanol solvent, gibbsite suspension was prepared by application of ball-milling and ultrasonification with addition of 0.25 vol% dispersion agent, Darvan C, which was diluted into distilled water by the ratio 1:19. Appling the static sedimentation method to gibbsite suspension after estimation of the sedimentation time by the measurement of accumulative concentration variation, we acquired TEM specimens with well-dispersed and size selected gibbsite particles in nm scale. Overall picture of each sample was taken by SEM and morphology of each dispersed particle was imaged by TEM. Raw and processed gibbsite powders were also examined by XRD to investigate whether they were suffered from phase change during the process or not.

Direct Preparation of Fine Nickel Powder by Slurry Reduction Method for MLCC (슬러리환원법에 의한 MLCC용 미세 니켈 분말 직접 제조)

  • Shin, Gi-Wung;Ahn, Jong-Gwan;Kim, Dong-Jin;Kim, Sang-Bae;Ahn, Jea-Woo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.191-197
    • /
    • 2010
  • Fine nickel metal powder of uniform morphology, narrow size distribution, and high purity was prepared from high purity metal solution. Slurry reduction method for the synthesis of metal powder was applied with a special interest in their fine and spherical shape. The products were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Well dispersed ultrafine nickel powder with the particle size range of 100~200 nm was produced from Ni-hydrazine precursor using hydrazine as a reductant for 90 min reaction in 4.5 M NaOH solution.