• Title/Summary/Keyword: Powder Morphology

Search Result 567, Processing Time 0.024 seconds

Characteristics of Workers' Exposure to Aerosolized Particles during the Production of Carbon Nanotube-enabled Composites (탄소나노튜브 복합체 취급 작업자의 공기 중 입자상 물질 노출 특성)

  • Kwon, Jiwoon;Kim, Sungho;Jang, Miyeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Objectives: The purpose of this case study is to assess workers' exposure to carbon nanotubes(CNTs) and characterize particles aerosolized during the process of producing CNT-enabled polytetrafuoroethylene(PTFE) composites at a worksite in Korea. Methods: Personal breathing zone and area samples were collected for determining respirable concentrations of elemental carbon(EC) using NIOSH(National Institute for Occupational Safety and Health) Method 5040. Personal exposure to nano-sized particles was measured as the number concentration and mean diameter using personal ultrafine particle monitors. The number concentration by particle size was measured using optical particle sizers(OPS) and scanning mobility particle sizers(SMPS). Transmission electron microscopy (TEM) area samples were collected on TEM grids and analyzed to characterize the size, morphology, and chemistry of the particles. Results: Respirable EC concentrations ranged from 0.04 to 0.24 ㎍/㎥, which were below 23% of the exposure limit recommended by NIOSH and lower than background concentrations. Number concentrations by particle size measured using OPS and SMPS were not noticeably elevated during CNT-PTFE composite work. Instant increase of number concentrations of nano-sized particles was observed during manual sanding of CNT-PTFE composites. Both number concentrations and mean diameters did not show a statistically significant difference between workers handing CNT-added and not-added materials. TEM analyses revealed the emission of free-standing CNTs and CNT-PTFE aggregate particles from the powder supply task and composite particles embedded with CNTs from the computer numerical control(CNC) machining task with more than tens of micrometers in diameter. No free-standing CNT particles were observed from the CNC machining task. Conclusions: Significant worker exposure to respirable CNTs was not found, but the aerosolization of CNTs and CNT-embedded composite particles were observed during handing of CNT-PTFE powders and CNC machining of CNT-PTFE composites. Considering the limited knowledge on the toxicity of CNTs and CNT composite particles to date, it seems prudent to take a precautionary approach for the protection of workers' health.

Preparation and Biocompatibility of Medical Fiber from Novel Regenerated Cellulose from Styela clava tunic (미더덕껍질의 재생셀룰로오스를 이용한 의료용 섬유의 제조 및 생체적합성)

  • Song, Sung Hwa;Kim, Ji Eun;Choi, Jun Young;Park, Jin Ju;Lee, Mi Rim;Song, Bo Ram;Lee, Yechan;Kim, Hong Sung;Lee, Jae Ho;Lim, Yong;Hwang, Dae Youn;Jung, Young Jin
    • Textile Coloration and Finishing
    • /
    • v.30 no.2
    • /
    • pp.117-129
    • /
    • 2018
  • Cellulose has been widely applied into various medical fields including scaffolding, tissue engineering and tissue formation. In this study, we manufactured cellulose medical fiber from Styela clava tunics(SCT-CS) and analyzed the tensile strength, elongation at break, fluid uptake and surface morphology. And then, the biocompatibility and toxicity of SCT-CS were measured in Sprague-Dawley(SD) rats after the implantation for 30, 60 and 90 days. The level of tensile strength and fluid uptake were lower in SCT-CS than chromic catgut(CCG), while elongation at break level were maintained the higher in SCT-CS. Also, the roughness with pronounced surface patterns as a result of in vivo degradation was significantly greater in CCG than this of SCT-CS although these levels gradually appeared with time in both groups. After implantation for 90 days, SCT-CS and CCG was successfully implanted around muscle of thigh without any significant immune response. Furthermore, no significant alterations were measured in serum parameters and the specific pathological features induced by most toxic compounds for liver and kidney toxicity. Therefore, these results suggest that SCT-CS showing good biocompatibility and non-toxicity can be successfully prepared from cellulose powder of SCT as well as has the potential for use as a powerful biomaterial for medical sutures.

Effect of the pH of Pyrophoric Synthetic Solution on the Formation Kinetics of Y1Ba2Cu3O7-x Superconducting Phase (발화합성용액의 pH가 Y1Ba2Cu3O7-x 초전도상 생성 속도에 미치는 영향)

  • Park, J.S.;Kim, Y.S.;Yang, S.W.;Kim, C.Y.;Shin, H.S.
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.165-171
    • /
    • 1998
  • The $Y_1Ba_2Cu_3O_{7-x}$(123) superconductor powders were prepared by pyrophoric synthesis method(PSM) using $Y_2O_3$(99.9%), $BaCO_3$(99.9%), and CuO(99.9%) powders. The phase formation and reaction kinetics of 123 superconductor manufactured with powders prepared in various pHs of pyrophoric synthetic solution have been studied through the experiments at various heat treatment temperatures and times. Inductively coupled plasma(ICP) spectroscopy and scanning electron microscopy(SEM) measurements were performed to examine the composition and morphology of the sample. X-ray diffraction(XRD) analysis was done to determine phase formation and conversion ratio of Y-Ba-Cu-O systems. The 123 powder prepared at pH 7(${\pm}0.3$) yields the best result in terms of purity, homogeneity, and reactivity. The activation energies(${\Delta}E_a$) of 123 phase formation were found to be 191 kJ/mol and 230kJ/mol in solid state reaction method and pyrophoric synthesis method, respectively.

  • PDF

Analysis of adsorption behavior of lead ion on to surface modified AlPO4 materials (표면처리된 AlPO4에 대한 납 이온의 흡착 거동 분석)

  • Kim, Young-Ho;Kil, Hyun-Suk;Kang, Kwang-Cheol;Choi, Suk-Nam;Rhee, Seog-Woo
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.275-281
    • /
    • 2011
  • $AlPO_4$-type material was synthesized by a reaction of $Al(OH)_3$ and H3PO4 with organic templates from wastewater of detergent manufacturer. The surface of material was coated with carboxylate groups by the reaction of succinic anhydride with surface amino groups which were formed by treatment of the material with APTMS. Powder XRD patterns showed the characteristic patterns of $AlPO_4$. Morphology of the material was examined using a SEM and the functional groups were investigated by FT-IR analysis. The surface charge of a aqueous suspension was analyzed: $AlPO_4-NH_2$ has positively charged surface while $AlPO_4$-COOH has negatively charged one. They were used for the removal of toxic metals from aqueous solution. The lead ions were adsorbed on the surface by the formation of complexes with carboxylate of surface and $K_d$ was 91.1 mL/g. In conclusion, the $AlPO_4$-COOH might be applicable in the removal of toxic metal ions from aqueous system.

Comparative Efficacy of Different Soy Protein Sources on Growth Performance, Nutrient Digestibility and Intestinal Morphology in Weaned Pigs

  • Yang, Y.X.;Kim, Y.G.;Lohakare, J.D.;Yun, J.H.;Lee, J.K.;Kwon, M.S.;Park, J.I.;Choi, J.Y.;Chae, B.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.775-783
    • /
    • 2007
  • To elucidate the efficacy of different soy protein sources on piglet's performance, a total of 280 weaned piglets ($Duroc{\times}Yorkshire{\times}Landrace$, $23{\pm}3$ d of age, $5.86{\pm}0.45$ kg initial BW) were allotted to 5 treatment diets comprising soybean meal (SBM), soy protein concentrate (SPC), Hamlet protein (HP300), fungal (Aspergillus oryzae) fermented soy protein (FSP-A), and fungal plus bacterial (A. oryzae+Bacillus subtilis) fermented soy protein (FSP-B), respectively. Experimental diets for feeding trial were formulated to contain each soy protein sources at 8% level to corn-whey powder basal diet. There were 14 pigs per pen and 4 pens per treatment. Experimental diets were fed from 0 to 14 d after weaning and then a common commercial diet was fed from 15 to 35 d. Also for ileal digestibility studies, 18 pigs were assigned to 6 dietary treatments as N-free, SBM, SPC, HP300, FSP-A and FSP-B with T-canulation at distal ileum for 6 days. At $14^{th}$ d of experimental feeding, the ADG was significantly higher (p<0.05) in SPC fed diet as compared with others. Similar trend was noticed during the 15-35 d and overall study (0-35 d). All the processed soy protein sources tested in this experiment improved (p<0.05) growth than SBM during overall study. The nutrient digestibility of GE, DM, CP and Ca showed lower (p<0.05) values in SBM and FSP-A fed groups than SPC and FSP-B treatments. The apparent ileal digestibility of TEAA, non-TEAA and TAA showed lower (p<0.05) in SBM treatments compared with other soy protein sources. The true ileal digestibility of TEAA, non-TEAA and TAA were lower (p<0.05) in SBM fed group than SPC and HP300 treatments, and lower than FSP treatments though they didn't achieve significant difference (p>0.05). Villous height and crypt depth was not affected by dietary treatments. In conclusion, the growth and digestibility of nutrients in weaned pigs fed SPC was superior to others. Also FSP-A and FSP-B showed improved performance than those fed SBM.

Preparation and Characteristic of Size Controlled Platy Silver by Polyol Process with $PdCl_2$ ($PdCl_2$ 첨가 폴리올공정(工程)을 이용(利用)한 판상 은(銀) 분말(粉末) 제조(製造) 및 특성(特性))

  • Shin, Gi-Wung;Ahn, Jong-Gwan;Kim, Dong-Jin;Cho, Sung-Wook;Ahn, Jea-Woo
    • Resources Recycling
    • /
    • v.19 no.5
    • /
    • pp.58-67
    • /
    • 2010
  • Platy silver powders with varied size and thickness were prepared by polyol process with $PdCl_2$ in ethylene glycol and characterized its properties and investigated the effects of reaction time, $NH_4OH$, PVP(poly-vinylpyrrolidone) and $PdCl_2$. The characteristics of the products were verified by scanning electron microscopy(SEM), high resolution transmitted electron microscopy(HR-TEM), X-ray diffraction(XRD) and particle size analyzer(PSA) and image analyzer. Platy silver powder was prepared about $5.5\;{\mu}m$ of size and $0.2\;{\mu}m$ at 120minute. It was found that the size of powders increased by the increasing of $NH_4OH$ and $PdCl_2$ concentrations, and the thickness of powders was decreased by increasing of PVP concentration.

Microwave Synthesis of Alpha Alumina Platelets Using Flux Method (Flux법에 의한 알파 알루미나 판상체의 마이크로파 합성)

  • Park, Seong-Soo;Kim, Jun-Ho;Kim, Sung-Wan;Lee, Sung-Hwan;Park, Jae-Hyun;Park, Hee-Chan
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.473-478
    • /
    • 2002
  • ${\alpha}-Al_2O_3$ platelets were synthesized by microwave heating the two different powder mixtures of $Al_2(SO_4)_3+2Na_2SO_4$ and ${\gamma}-Al_2O_3+2Na_2SO_4$ using flux method. DTA-TG, XRD and SEM were used to investigate the effect of microwave on the formation of ${\alpha}-Al_2O_3$ platelets. In the case of the mixture of $Al_2(SO_4)_3+2Na_2SO_4$, the microwave heated sample was ${\alpha}-Al_2O_3$ platelets composed of aggregates with smaller particle size compared to the conventionally heated sample. In the case of the mixture of ${\gamma}-Al_2O_3+2Na_2SO_4$, the temperature to form ${\alpha}-Al_2O_3$ platelets by the microwave heating was lower than that by the conventional heating and the morphology of the microwave heated sample was similar to that of the conventionally heated sample except that the microwave heated sample had smaller particle size compared to the conventionally heated sample.

An Evaluation of Antibacterial Titanium Surface For Dental Implant (치과용 임플란트 적용을 위한 항균력을 가진 티타늄 표면의 평가)

  • Kang, Min-Kyung;Moon, Seung-Kyun;Kim, Kyoung-Nam
    • Journal of dental hygiene science
    • /
    • v.11 no.5
    • /
    • pp.405-410
    • /
    • 2011
  • The aim of this study was to evaluate antibacterial effect of Cl coated titanium. To coat the Cl on the titanium, first, the titanium was modified by blasting treatment with hydroxyapatite and alumina powder. Anodization process was completed using electrolyte solution of 0.04 M ${\beta}$-glycerol phosphate disodium salt n-hydrate, 0.4 M calcium acetate n-hydrate and 1 M NaCl on the condition of 250 voltages for 3 min. Surface morphology and elements' observation were performed with scanning electron microscopy and energy dispersive spectroscopy and surface profiler was used to analyze the surface roughness. Antibacterial effect was evaluated by film adhesion method. The anodized titanium after blasting showed dimpled surface contained the Cl. Surface average roughness of these surfaces had significantly higher compared to polished titanium. Result of antibacterial test showed that anodized titanium after blasting had an enhanced antibacterial effect compared to the polished titanium. Therefore, these results suggested that titanium contained Cl by anodization after blasting had a rough surface as well as antibacterial effect.

Effects of Lipomyces starkeyi KSM 22 Glucanhydrolase on human gingival fibroblasts (Lipomyces starkeyi KSM 22 Glucanhydrolase 용액의 치은 섬유아세포에 대한 영향)

  • Yun, Hyun-Jeong;Chung, Hyun-Ju;Kim, Ok-Su;Kim, Do-Man
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.3
    • /
    • pp.665-683
    • /
    • 2002
  • A novel glucanhydrolase from a mutant of Lipomyces starkeyi KSM 22 has additional amylase activity besides mutanolytic activity and has been suggested as promising anti-plaque agent. It has been shown effective in hydrolysis of mutan, reduction of mutan formation by Streptococcus mutans and removal pre-formed sucrose-dependent adherent microbial film and has been strongly bound to hydroxyapatitie. These in vitro properties of Lipomyces starkeyi KSM 22 glucanhydrolase are desirable for its application as a dental plaque control agent. In human experimental gingivitis model and 6 month clinical trial, mouthrinsing with Lipomyces starkeyi KSM 22 dextranase was comparable to 0.12% chlorhexidine mouthwash in inhibition of plaque accumulation and gingival inflammation and local side effect was negligible. This study was aimed to evaluate the cytotoxic effect of Lipomyces starkeyi KSM 22 glucanhydrolase on human gingival fibroblasts. Primary culture of human gingival fibroblasts at the 4th to 6th passages were used. Glucanhydrolase solution was made from lyophilized glucanhydrolase powder from a mutant of Lipomyces stakeyi KSM 22 solved in PBS and added to DMEM medium to the final concentration of 0.5, 1, and 2 unit. Cells were exposed to glucanhydrolase solution or 0.1 % chlorhexidine and the cells cultured in DMEM with 10% FBS and 1% antibiotics as control. After exposure, the morphological change, cell attachment, and cell activity by MTT assay were evaluated in 0.5, 1.5, 3, 6, 24 hours after treatment. The cell proliferation and cell activity was also evaluated at 2 and 7 days after 1 minute exposure, twice a day. The cell morphology was similar between the Lipomyces smkeyi KSM 22 glucanhydrolase groups and control group during the incubation periods, while most fibroblasts remained as round cell regardless of incubation time in the chlorhexidine group. The numbers of the attached cells in the glucanhydrolase groups were comparable to that of control and significantly higher than the chlorhexidine group. The numbers of the proliferated cells in the glucanhydrolase groups at 7 days of incubation were comparable to the control group and higher than the chlorhexidine group. The cell activity in glucanhydrolase groups paralleled with the increased cell number by attachment and proliferation. According to these results, Lipomyces starkeyj KSM 22 glucanhydrolase has little harmful effect on attachment and proliferation of human gingival fibroblasts, in contrast to 0.1% chlorhexidine which was cytotoxic to human gingival fibroblasts. Therefore this glucanhydrolase preparation is considered as a safe and promising agent for new mouthwash formula in the near future.

Assessment of Emitted Volatile Organic Compounds, Metals and Characteristic of Particle in Commercial 3D Printing Service Workplace (실제 3D 프린팅 작업장에서 발생하는 공기 중 유기화합물, 금속 및 입자특성 평가)

  • Kim, Sungho;Chung, Eunkyo;Kim, Seodong;Kwon, Jiwoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.2
    • /
    • pp.153-162
    • /
    • 2020
  • Objectives: 3D printing technologies have become widely developed and are increasingly being used for a variety of purposes. Recently, the evaluation of 3D printing operations has been conducted through chamber test studies, and actual workplace studies have yet to be completed. Therefore, the objective of this study was to determine the emission of volatile organic compounds(VOCs), metals, and particles from printing operations at a workplace. This included monitoring conducted at a commercial 3D printing service workplace where the processes involved material extrusion, material jetting, binder jetting, vat photo polymerization, and powder bed fusion. Methods: Area samples were collected with using a Tenax TA tube for VOC emission and MCE filter for metals in the workplace. For particle monitoring, Mini Particle Samplers(MPS) were also placed in the printer, indoor work area, and outdoor area. The objective was to analyze and identify particles' size, morphology, and chemical composition using transmission electron microscopy with energy dispersive spectroscopy(TEM-EDS) in the workplace. Results: The monitoring revealed that the concentration of VOCs and metals generated during the 3D printing process was low. However, it also revealed that within the 3D printing area, the highest concentration of total volatile organic compounds(TVOC) was 4,164 ppb at the vat photopolymerization 3D printing workplace, and the lowest was 148 ppb at the material extrusion 3D printing workplace. For the metals monitoring, chromium, which, is carcinogenic for humans, was detected in the workplace. As a characteristic of the particles, nano-sized particles were also found during the monitoring, but most of them were agglomerated with large and small particles. Conclusions: Based on the monitoring conducted at the commercial 3D printing operation, the results revealed that the concentration of VOCs and metals in the workplace were within Korea's occupational exposure limits. However, due to the emission of nano-sized particles during 3D printing operations, it was recommended that the exposure to VOCs and metals in the workplace should be minimized out of concern for workers' health. It was also shown that the characteristics of particles emitted from 3D printing operations may spread widely within an indoor workplace.