• Title/Summary/Keyword: Powder Forging Process

Search Result 38, Processing Time 0.028 seconds

Effect of Hot-forging on NiTi Shape Memory Alloy Fibers Reinforced Mg Alloy Composite

  • Guo, Qi;Li, Gang;Tang, Renjian;Yan, Biao
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.846-847
    • /
    • 2006
  • The composite used in this paper was prepared by hot-pressing ball-milled Mg alloy powders, in which NiTi shape memory alloy fibers in a row were sandwiched. The microstructure and property were examined. It is shown that the composite consisted of a homogenous matrix with uniformly distributed NiTi shape memory alloy fibers, recrystallization took place in the Mg alloy matrix which was subjected to plastic deformation an adequate bonding formed between the matrix and fibers; the density and tensile strength of the composite increased after the hot-forging; the hot-forging process is capable of improving properties of the composite.

  • PDF

Development of an Automated Die Design System for Powder Forging (분말단조용 금형설계 자동화 시스템의 개발)

  • 박종옥;김길준;김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1029-1032
    • /
    • 2001
  • The purpose of this paper is to establish an automated die design system for compacting and sizing process required in Powder Metallurgy. Though the Powder Metallurgy(P/M) is a practical and economical forming technology, it needs long time and many trials and errors for die design. Such a problem can be solved by introduction of the automated die design system for P/M. In order to establish the system, collecting, classifying, and systematizing related knowledges from the experts in industries, books, and papers were performed. The system was constructed by AutoLISP, the language operated in AutoCAD atmosphere. This language can efficiently support for user to work on drawings. There are three modules ; P/M part specification input module, P/M part design module, and Die design module. A part for vehicle was applied to the system and satisfied results were achieved.

  • PDF

Preform Design for the Sinter-forging Process of Arc-shaped Powdered Magnets (원호 형상을 가지는 분말자석 단조성형공정에서의 예비성형체 설계)

  • Kim, Seung-Ho;Lee, Choong-Ho;Huh, Hoon
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.135-142
    • /
    • 1999
  • Tube Process(TP) is one of the processes to produce permanent magnets. Advantage claimed for this process is that it can accmplish both densification and anisotropication in one step forming. This process is distinguished from other processes since it uses deformable tube for densification of powder magnets. TP has, however, difficulties in manufacturing permanent magnets from Nd-Fe-B green powder due to folding resulted from large height reduction and localized densification. Therefore, an adequate preform is necessary to reduce folding resulted from large height reduction and localized densification. Therefore, an adequate preform is necessary to reduce folding, lead magnets into almost desired final shape and get uniform densification. In this paper, preform design for TP is carried out without a deformable tube to investigate the behaviour of magnet sinter-forging. Preform design is accomplished to increase the effective magnet area with a near net shape and uniform densification.

  • PDF

High Temperature Densification Forming Process of Tool Steel Powder Compact (공구강 분말 성형체의 고온 치밀화 성형공정)

  • Choi, Hak-Hyeon;Jeon, Yun-Cheol;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2182-2195
    • /
    • 1996
  • Densification characteristics and behavior of tool steel powder compact during high temperature forming processes were investigated under pressure less sintering, sinter forging and hot isostastic pressing. In pressureless sintering, full density was obtained at a closely controlled temperature near the solidus of the material. Finite element calculations from constitutive model for densification by power law creep and diffusional flow were compared with experimental data. Agreements between theoretical calculations and experimental data were good in hot isostatic pressing but not as good in sinter forging.

Finite Element Analysis of Powdered Magnet Sinter-Forging Processes Considering Deformable Body Contact (변형체 접촉을 고려한 분말자석 소결단조 성형공정의 유한요소 해석)

  • Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.478-484
    • /
    • 2001
  • Tube Process (TP) is a process to produce permanent magnets using a deformable tube for densification of magnet powder. This process claims that it can accomplish both densification and anisotropication in one step forming. This process is distinguished from other processes since it uses a deformable copper tube for densification of magnet powder. In this paper, simulation has been carried out for tile Tube Process in a closed die considering the compressibility of powdered material, arbitrary curved shape and deformable body contact between Nd-Fe-B magnet powder and a copper tube. Results show that the finite element analysis of the Tube Process plays an important role in the stage of preform design.

  • PDF

A Study on Optimum Reheating Process of Automotive Aluminum Piston using Neural Network and the Taguchi Method in Semi-Solid forming (반용융 성헝에서의 다구찌 방법과 신경망을 이용한 자동차 알루미늄 피스톤의 최적 재가열 과정에 대한 연구)

  • 윤재민;김영호;박준홍;최재찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.902-905
    • /
    • 2000
  • As the manufacturing processes of automotive engine piston, gravity die-casting, squeeze casting, hot forging and powder forging process are generally used for the various specifications. As the semi-solid forming(SSF) is compared with conventional casting such as gravity die-casting and squeeze casting for the characteristics of its process, the product without inner defects such as gas porosity and segregation can be obtained and its microstructure is globular grain. In SSF process, the materials are heated up to the temperature between the solvus and liquidus line at which the materials exists in the form of liquid-solid mixture. In this time, Discussion is given about reheating process of row material and results are presented regarding accurate temperature and process variables controlling for right solid fractions.

  • PDF

Friction Characteristics of Warm a Forging Lubricant Containing Nano Graphite Powder (나노분말이 함유된 온간단조용 윤활제 마찰특성)

  • Kim, D.W.;Kim, Y.R.;Lee, G.A.;Choi, H.J.;Yun, D.J.;Shin, Y.C.;Lee, J.K.;Lim, S.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.13-18
    • /
    • 2012
  • During warm forging, materials are formed in the temperature range of $300^{\circ}C\sim900^{\circ}C$. In this temperature range, the friction between the forging die and the material is very high and has a negative effect on the forming process causing severe die wear and possible defects in the component because of stick-slip. Thus, lubrication characteristics are a very important factor for productivity during warm forging. In this paper, ring compression experiments were conducted to estimate the friction factor between the die and the materials as the main factor in characterizing the lubricant. Also, ring tests using normal graphite power as a lubricant coating system were compared with tests using nano graphite powder. The results confirm that the nano graphite is superior to the normal graphite in view of its lubricating effect. In addition, the friction factor (m) was estimated with respect to the amount of the nano graphite content in the lubricant. With 10 % nano graphite the friction factor had the lowest value as compared to other amounts. It can be concluded that the amount of the nano graphite in the coating system can be optimized to obtain the best lubrication condition between the die and the material using ring test experiments.

Development of automotive parts by powder forging process (분말단조에 의한 자동차 부품의 개발)

  • 정형식;이정환;이동원
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.22-29
    • /
    • 1991
  • 분말단조란 종래의 분말야금법으로 예비 성형체를 만든후 그것을 단조 소재로 열간단조를 통하여 최종 제품을 만드는 부품가공기술이다. 본 고에서는 분말단조의 이해와 선진국에서 개발에 성공한 사례 및 경제성을 조사함으로써 분말단조기술의 현황 파악 및 기술 축적을 도모하고자 하였다.

  • PDF

Finite Element Analysis of Powdered Magnet Sinter-forging Processes considering Deformable Body Contact (변형체 접촉을 고려한 분말자석 단조성형공정의 유한요소해석)

  • 이형욱
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.82-85
    • /
    • 1999
  • Permanent magnets of Nd-Fe-B group have kept a key post in the permanent magnet market and used in various parts. Tube Process is a process to produce permanent magnets using a deformable tube for denslfication of powder magnets. Advantage claimed for this process is that it can accomplish both densification and anisotropication in one step forming. In this paper. the simulation has been carried out for a full Tube Process in a closed Qe considering the compressibility of material, arbitrary curved shape and deformable body contact between Nd-Fe-B powder magnet and copper tube. The results show that the analysis of Tube Process is applicable with great help in the stage of preform design.

  • PDF

Prediction of Relative Density by Hardness in Compressed Sintered-Metal Powder (경도를 이용한 소결압축금속분말의 상대밀도 예측)

  • 김진영;박종진
    • Transactions of Materials Processing
    • /
    • v.6 no.6
    • /
    • pp.508-516
    • /
    • 1997
  • Forging process on sintered powder metals has been applied to produce automotive parts which require a high level of strength. In those parts, the measurement of relative density is very important because a low relative density density causes deterioration of strength. In the present study, an indentation force equation was proposed by which the result obtained from the hardness measurement is used to evaluate the relative density. This equation was applied to the prediction of the relative density in cylindrical specimens which were first sintered and then forged at the room temperature and at an elevated temperature. The experimental results were compared with predictions with and without consideration of the workhardening effect on the powder.

  • PDF