• Title/Summary/Keyword: Powder Flow

Search Result 611, Processing Time 0.022 seconds

Simulation of Ceramic Powder Injection Molding Process to Clarify the Change of Sintering Shrinkage Depending on Flow Direction (유동방향과 밀도이방성 분석을 위한 세라믹 분말사출성형 해석)

  • Kwak, Tae-Soo;Seo, Won-Seon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.229-233
    • /
    • 2009
  • This study has focused on manufacturing technique of powder injection molding of watch case made from zirconia powder. A series of computer simulation process was applied to prediction of the flow pattern in the inside of the mould to clarifying the change of sintering shrinkage depended on flow direction. The material properties of melted feedstock inclusive of the PVT graph and thermal viscosity flowage properties were measured for obtaining the input data in computer simulation. Also, molding experiment was conducted and the results of experiment showed that good agreement with simulation results for flow pattern and weld line location. On the other hand, gravity and inertia effect have an influence on velocity of melt front because of high density of ceramic powder particles in powder injection molding against the polymer injection molding process. In the experiment, the position of melt front was compared with upper gate and lower gate position. The gravity and inertia effect could be confirmed in the experimental results.

The Properties and Manufacture of Porous Tantalum Powder for Capacitor (콘덴서용 다공성 Ta 분말의 제조 및 특성)

  • Lee, Sang Il;Lee, Seung Young;Won, Chang Whan
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.326-334
    • /
    • 2010
  • Porous and net-shaped tantalum powder for a capacitor was formulated in a SHS (self-propagating high-temperature synthesis) process. However, this powder, which has weak strength among its particles and low flow ability, cannot be used for a capacitor. Therefore, this powder was sintered in a high-vacuum furnace to increase agglomeration to improve the flow ability, bonding strength among the particles, and shrinkage during pellet sintering. Finally, it was deoxidated with 2 wt% Mg powder to remove the increased surface oxygen that arose during the sintering process. The final product was analyzed in terms of its chemical and physical properties and was compared with a commercial powder used by a capacitor manufacturer.

Effect of Waste Marble Powder on the Fundamental Properties of High Fluidity Concrete (폐 대리석 분말을 혼입한 고유동 콘크리트의 기초적 특성에 대한 실험적 연구)

  • Lee, Yong-Moo;Shin, Sang-Yeop;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.153-160
    • /
    • 2015
  • The marble powder is a by-product that can be freely collected during the manufacturing process of marble, such as sawing, shaping, and polishing. Disposal of this waste powder is one of the environmental problems worldwide today. Therefore, this study investigated to solve this problem by consuming the waste marble powder in high fluidity concrete, as a pore filler. For this purpose, the waste marble powder was used as a binder replacing 5%, 10%, 15%, and 20% of cement in high fluidity concrete. After mixing, slump flow test, time-to-reach the slump flow of 500mm test, O-lot test and U-box test were conducted with fresh concrete. For the hardened concrete, compressive strength was determined at the age of 28 days. According to the test results, the workability of high fluidity concrete increased with the powder of 15% replacement, and the compressive strength of high fluidity concrete also increased with the same amount of powder.

The effects of limestone powder and fly ash as an addition on fresh, elastic, inelastic and strength properties of self-compacting concrete

  • Hilmioglu, Hayati;Sengul, Cengiz;Ozkul, M. Hulusi
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.93-102
    • /
    • 2022
  • In this study, limestone powder (LS) and fly ash (FA) were used as powder materials in self-compacting concrete (SCC) in increasing quantities in addition to cement, so that the two powders commonly used in the production of SCC could be compared in the same study. Considering the reduction of the maximum aggregate size in SCC, 10 mm or 16 mm was selected as the coarse aggregate size. The properties of fresh concrete were determined by slump flow (including T500 time), V-funnel and J-ring experiments. The experimental results showed that as the amount of both LS and FA increased, the slump flow also increased. The increase in powder material had a negative effect on V-funnel flow times, causing it to increase; however, the increase in FA concretes was smaller compared to LS ones. The increase in the powder content reduced the amount of blockage in the J-ring test for both aggregate sizes. As the hardened concrete properties, the compressive and splitting strengths as well as the modulus of elasticity were determined. Longitudinal and transverse deformations were measured by attaching a special frame to the cylindrical specimens and the values of Poisson's ratio, initiation and critical stresses were obtained. Despite having a similar W/C ratio, all SCC exhibited higher compressive strength than NVC. Compressive strength increased with increasing powder content for both LS and FA; however, the increase of the FA was higher than the LS due to the pozzolanic effect. SCC with a coarse aggregate size of 16 mm showed higher strength than 10 mm for both powders. Similarly, the modulus of elasticity increased with the amount of powder material. Inelastic properties, which are rarely found in the literature for SCC, were determined by measuring the initial and critical stresses. Crack formation in SCC begins under lower stresses (corresponding to lower initial stresses) than in normal concretes, while critical stresses indicate a more brittle behavior by taking higher values.

The Effect of H2 Flow Rate and TMS Concentration on Synthesizing Ultrafine $\beta$-SiC Powder by Vapor Phase Reaction (기상반응에 의한 $\beta$-SiC 초미분말 합성시 수소 가스유량과 TMS 농도의 영향)

  • 유용호;어경훈;소명기
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.853-858
    • /
    • 1999
  • To investigate the effect of H2 flow rate and TMS[Si(CH3)4] concentration on synthesizing ultrafine ${\beta}$-SiC powder by vapor phase reaction the experiment was performed at 1100$^{\circ}C$ of the reaction temperature under the condition of 200-2000 cc/min of H2 gas flow rate and 1-10% of TMS concentration respectively. The shape of ${\beta}$-SiC particles synthesized was spherical and the size of particles decreased and the distribution of particles was more uniform with increasing H2 gas flow rate. In this case Si powders were coexisted with ${\beta}$-SiC Pure and ultrafine ${\beta}$-SiC powders without Si were obtained under the condition of above 2% of TMS concentration and below 1500 cc/min of H2 gas flow rate.

  • PDF

Synthesis of $Li_xNi_(0.85)Co_(0.15)O_2$ by the PVA-procursor Method and the Effect of Air Flow During the Pyrolysis

  • 권호진;김근배;김수주;송미영;박선희;권혜영;박동곤
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.508-516
    • /
    • 1999
  • Polycrystalline powder of LixNi0.85Co0.15O2 was synthesized by pyrolyzing a powder precursor obtained by the PVA-precursor method. Coin cells of lithium-ion rechargeable battery were assembled, whose the cathodes were fabricated from the crystalline powders of LixNi0.85Co0.15O2 synthesized by the method. The effect of synthetic variation on the property of the cell was tested by carrying out 100 consecutive cycles of charge-dis-charge on the cells. The property of the cell was largely influenced by the pyrolysis conditions applied for the synthesis of the LixNi0.85Co0.15O2. Depending on whether the pyrolysis was carried out in standing air or in the flow of dry air, the discharge capacity and cycle-reversibility of the cell varied in large extent. When the powder precursor was pyrolyzed in standing air, a minor phase of lithium carbonate was remained in the LixNi0.85Co0.15O2. The carbon containing powder precursor had to be pyrolyzed in the flow of dry air to eliminate the minor phase. In the flow of dry air, the lithium carbonate in the precursor was eliminated over 500-700。C without any prominent heat event. By controlling the flow of air over the precursor during its pyrolysis, particle size could also be altered. The effect of flowing dry air, during first step pyrolysis or during second step heat treatment, on the property of the cell was discussed.

Performance Test of the Inorganic Surface Preparation Materials Using EVA Powder Resin for Wall (EVA 분말수지를 이용한 벽체용 무기질 바탕조정재의 성능평가)

  • Chang, Jin-Ho;Kang, Byeong-kwen;Chang, Sung-Ju
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.305-307
    • /
    • 2013
  • In this paper, we test and evaluate in terms of workability the epoxy resin mortar and the EVA powder resin mortar used on the concrete structures. The initial viscosity of the epoxy resin mortar is lower than the EVA powder mortar, but after 20 minutes work can not be rapidly increased to 40 minutes. In the other hand, the EVA powder resin mortar is able to measure of viscosity for the past 40 minutes. In the flow test for evaluate workability, the flow of the epoxy resin mortar is rapidly decreased from 230 to 100 in the 90 minutes, but the flow of the EVA powder resin mortar is reduced to 198 to 175 that there is no significant change. In the coverage test of the pinhole on the concrete surface, the EVA powder mortar appears coverage in the all pinhole size but the epoxy resin mortar is not concealed from 2mm pinhole size.

  • PDF

Ceramic injection molding of the watch case composed by zirconia$(ZrO_2)$ powder (지르코니아$(ZrO_2)$ 분말을 이용한 시계케이스의 세라믹 사출성형)

  • Kwak T.S.;Shin H.Y.;Lim J.I.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.275-278
    • /
    • 2005
  • This study has focused on manufacturing technique of powder injection molding of watch case which made from zirconia powder. A series of computer simulation process was applied to prediction of the flow pattern in the inside of the mould and defects as weld line. The material properties of melted feedstock inclusive of the PVT graph and thermal viscosity flowage properties were measured for obtaining the input data in computer simulation. Also, molding experiment was conducted and the results of experiment showed that good agreement with simulation results far flow pattern and weld line location. On the other hand, gravity and inertia effect have an influence on velocity of melt front because of high density of ceramic powder particles in powder injection molding against the polymer injection molding process. In the experiment, the position of melt front was compared with upper gate and lower gate position. The gravity and inertia effect could be confirmed in the experimental results.

  • PDF

Properties of Fresh Mortar Mixed with Steel Furnace Slag Powder (제강슬래그 분말을 혼입한 굳지 않은 모르타르의 특성)

  • Lee, Jeong-Taek;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.33-34
    • /
    • 2023
  • Currently, research on construction materials using industrial by-products is being conducted in the Inhan construction industry due to CO2 emissions during the cement production process and a shortage of aggregates. Among these, research has been conducted to use steel furnace slag as an aggregate by reducing the reactivity of free-CaO, which has the characteristic of expanding through open storage, aging, and rapid cooling. However, research on the use of powder as a cement admixture or substitute is insufficient. Therefore, this study aims to analyze the properties of fresh mortar using steel furnace slag powder. The mixing ratio of steel furnace slag powder was divided into three levels: 0, 20, and 40 (%), and the test items were flow and unit weight. The experimental results showed that as the mixing ratio of steel furnace slag powder increased, flow and unit weight tended to increase. Therefore, it is expected to have a positive effect on improving workability or strength as a cement admixture.

  • PDF

Flowability of High Flowable Concrete with Fly Ash and Lime Powder (플라이 애시와 석회석 미분말을 혼용한 고유동 콘크리트의 유동 특성)

  • Cho Il-Ho;Sung Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.23-30
    • /
    • 2006
  • This study is performed to evaluate flowability of high flowable concrete using ordinary portland cement, crushed coarse aggregate, crushed sand, sea sand, fly ash, lime powder and superplasticizer. The slump flow and air content are increased with increasing the content of lime powder. But, the O-type funneling time and Box-type passing are decreased with increasing the content of lime powder. The slump flow, air content, O-type funneling time, Box-type passing and L-type filling of target compressive strength 21-27 MPa and 35-42 MPa at curing age 28 days are 47-50 cm and 56-60 cm, 4.2-5.5% and 4.0-5.7%, 8-12s and 5-10s, 4.3-5.0 cm and 3.4-5.0 cm, and excellent, respectively. These concrete can be used for high flowable concrete.