• Title/Summary/Keyword: Pouch-type battery

Search Result 10, Processing Time 0.024 seconds

A Study on the Cooling Performance Improvement of Pouch Battery Thermal Management System for Electric Vehicles (전기자동차 파우치형 배터리 열관리 시스템의 냉각성능 향상에 대한 연구)

  • Shin, Jeong-Hoon;Lee, Jun-Kyoung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.715-724
    • /
    • 2022
  • In many electric vehicles, large-capacity pouch-type lithium-ion battery packs are mainly used to increase the mileage on a single charge. The lithium ion battery should be operated within the temperature range of 25℃ to 40℃ because the battery performance can be rapidly deteriorated due to an increase in internal temperature. Battery thermal management system (BTMS) can give the suitable temperature conditions to battery by water cooling method. In this research, the heat transfer characteristics (the battery temperature distributions and the water flow characteristics) were analyzed by CFD method to investigate the thermal performance of the cooling plate with 4-pass water flow structure. Moreover, the effect of the presence of fins between the battery cell was identified. The fins made smooth temperature distributions between the battery cells due to the heat spreading and lower the average battery cells temperature.

A Study on Long-Term Cycling Performance by External Pressure Change for Pouch-Type Lithium Metal Batteries

  • Seong-Ju Sim;Bong-Soo Jin;Jun-Ho Park;Hyun-Soo Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.314-320
    • /
    • 2024
  • Lithium dendrite formation is one of the most significant problems with lithium metal batteries. The lithium dendrite reduces the lithium metal batteries' cycling life and safety. To apply consistent external pressure to a lithium metal pouch cell, we design a press jig in this study. External pressure creates dense lithium morphology by preventing lithium dendrite formation. After 300 cycles at 1 C, the cells with the external pressure perform far better than the cells without it, with a cycling retention of 97.8%. The formation of stable lithium metal is made possible by external pressure, which also enhances safety and cyclability.

Development of Secondary Battery Module Cooling System Technology for Fast Charging (고속 충전을 위한 이차전지모듈 냉각시스템 기술 개발)

  • Kang, Seok Jun;Kim, Miju;Sung, Donggil;Oh, Miyoung;Bae, Joonsoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.119-124
    • /
    • 2022
  • Because high power with large size cell is used for the battery pack of hybrid electric vehicles and electric vehicles (HEV and EV), average temperature in a battery cell is the important criteria of the thermal management of the battery pack. Furthermore, fast charging technology is required to reduce battery charging time. Since battery pack performance and lifespan are deteriorated due to the heat of cells and electronic components caused by fast charging, an effective cooling system is required to reduce performance deterioration. In this study, a cooling system and module design applied to a pouch-type for fast charging battery cell are investigated, and the cooling performance that can maximize the efficiency of the battery was analyzed. The result shows that the vapor chamber cooling system has better cooling performance, the temperature drop in the module was 5.82 ℃ compared with aluminum cooling plates.

Analysis of Effect of Surface Temperature Rise Rate of 72.5 Ah NCM Pouch-type Lithium-ion Battery on Thermal Runaway Trigger Time (72.5 Ah NCM계 파우치형 리튬이온배터리의 표면온도 상승률이 열폭주 발생시간에 미치는 영향 분석)

  • Lee, Heung-Su;Hong, Sung-Ho;Lee, Joon-Hyuk;Park, Moon Woo
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.1-9
    • /
    • 2021
  • With the convergence of the information and communication technologies, a new age of technological civilization has arrived. This is the age of intelligent revolution, known as the 4th industrial revolution. The 4th industrial revolution is based on technological innovations, such as robots, big data analysis, artificial intelligence, and unmanned transportation facilities. This revolution would interconnect all the people, things, and economy, and hence will lead to the expansion of the industry. A high-density, high-capacity energy technology is required to maintain this interconnection. As a next-generation energy source, lithium-ion batteries are in the spotlight today. However, lithium-ion batteries can cause thermal runaway and fire because of electrical, thermal, and mechanical abuse. In this study, thermal runaway was induced in 72.5 Ah NCM pouch-type lithium-ion batteries because of thermal abuse. The surface of the pouch-type lithium-ion batteries was heated by the hot plate heating method, and the effect of the rate of increase in the surface temperature on the thermal runaway trigger time was analyzed using Minitab 19, a statistical analysis program. The correlation analysis results confirmed that there existed a strong negative relationship between each variable, while the regression analysis demonstrated that the thermal runaway trigger time of lithium-ion batteries can be predicted from the rate of increase in their surface temperature.

Implementation of an Electrode Positioning System to Improve the Accuracy and Reliability of the Secondary Battery Stacking Process (2차 전지 적층 공정의 정확성과 신뢰성 향상을 위한 전극 위치결정 시스템 구현)

  • Lee, June-Hwan
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.219-225
    • /
    • 2021
  • As for the battery package method, a prismatic package method is preferred for stability reasons, but it is rapidly expanding due to the stability verification of a pouch type package. The pouch type using the lamination process has an advantage of high battery energy density because it can reduce space waste, but has a disadvantage of low productivity. Therefore, in this paper, by extracting edge detection algorithm precision, pattern algorithm precision, and motion controller recall rate by improving backlight lighting fixtures to minimize light diffusion, securing standards for stereo camera position relationship displacement monitoring, and securing standards for lens release monitoring. We propose to implement a system that ensures accuracy and reliability in positioning. As a result of the experiment, the proposed system shows an average error range of 0.032mm for edge detection, 0.02mm for pattern algorithm, and 0.014mm for motion controller, thus ensuring the accuracy and reliability of the positioning mechanism.

Cooling CFD Analysis of a Car Batter Pack with Circular Cells (원통형 셀을 이용한 자동차용 배터리팩 냉각해석)

  • Shin, Hyun Jang;Lee, Joo Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.693-698
    • /
    • 2017
  • The 18650 battery cell is known to be reliable and cost effective, but it has a design limitation and low electric capacity compared to pouch-type cells. Because its economy is superior, an 18650-cell-type battery pack is chosen. A reliable temperature is very important in automobile battery packs. Therefore, in this study, the temperature stability of the battery pack is predicted using CFD simulation. Following 3C discharge tests, the results for the heat generation of the battery cell are compared to the simulation results. Based on these results, a natural convection condition, forced convection condition, direct cell-cooling condition, cooling condition on the upper and lower surfaces of the battery pack, and cooling condition using air channels are all simulated. The results indicate that the efficiency and the performance of the air-channel-type cooling system is good.

Development of An Eco-friendly Surface Treatment Process for the Design of the Al Lead Tab in Lithium-ion Batteries

  • Cheon, Jeongsuk;Kim, Jongwon
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.3
    • /
    • pp.153-158
    • /
    • 2020
  • With the recent popularity of mobile devices, the demand for lithium-ion batteries is increasing. In this study, the surface treatment process for the development of the Al (aluminum) lead tab for positive electrode, a key component of the pouch-type lithium-ion battery, was investigated. Anodizing and sealing processes were tested as surface treatment techniques. It was found that only a sealing process is needed to obtain sufficient adhesive strength. In the present study, an adhesive strength of 17 N/12 mm was achieved by degreasing and etching pretreatment, followed by a sealing process of 10 min duration. This adhesive strength was greater than that achievable using Cr (chromium) surface treatment. Using various surface analysis techniques, the shape and composition of the surface before and after being subjected to the surface treatment were compared and analyzed. The results of this study are expected to contribute to the development of an eco-friendly lead tab.

Effect of Temperature on the Deterioration of Graphite-Based Negative Electrodes during the Prolonged Cycling of Li-ion Batteries

  • Yang, Jin Hyeok;Hwang, Seong Ju;Chun, Seung Kyu;Kim, Ki Jae
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.208-212
    • /
    • 2022
  • In this paper, we report the effects of temperature on the deterioration of graphite-based negative electrodes during the longterm cycling of lithium-ion batteries (LIBs). After cycling 75 Ah pouch-type LIB full cells at temperatures of 45℃ (45-Cell) and 25℃ (25-Cell) until their end of life, we expected to observe changes in the negative electrode according to the temperature. The thickness of the negative electrode of the cell was greater after cycling; that of the electrode of 45-Cell (144 ㎛) was greater than that of the electrode of 25-Cell (109 ㎛). Cross-sectional scanning electron microscopy analysis confirmed that by-products caused this increase in the thickness of the negative electrode. The by-products that formed on the surface of the negative electrode during cycling increased the surface resistance and decreased the electrical conductivity. Voltage profiles showed that the negative electrode of 25-Cell exhibited an 84.7% retention of the initial capacity, whereas that of 45-Cell showed only a 70.3% retention. The results of this study are expected to be relevant to future analyses of the deterioration characteristics of the negative electrode and battery deterioration mechanisms, and are also expected to provide basic data for advanced battery design.

Principles and Comparative Studies of Various Power Measurement Methods for Lithium Secondary Batteries (리튬이차전지 출력측정법의 원리 및 측정법간 비교 연구)

  • Lee, Hye-Won;Lee, Yong-Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.115-123
    • /
    • 2012
  • As the market of lithium secondary batteries moves from mobile IT devices to large-format electric vehicles or energy storage systems, the strengthened battery specifications such as long-term reliability longer than 10 years, pack-level safety and tough competitive price have been required. Moreover, even though high power properties should also be achieved for hybrid electric vehicles, it is not easy to measure accurate power values at various conditions. Because it is difficult to choose a proper measurement method and its experimental condition is more complex comparing to capacity measurement. In addition, the power values are very sensitive to power duration time, state-of-charge (SOC) of cells, cut-off voltages, and temperatures, whereas capacity values are not. In this paper, we introduce three kinds of power measurement methods, hybrid pulse power characterization (HPPC) suggested by US FreedomCar, so-called J-pulse by Japan electric vehicle association standards (JEVS) and constant power measurement, respectively. Moreover, with pouch-type unit cells for HEV, experimental power data are discussed in order to compare each power measurement.

Performances of Li-Ion Batteries Using LiNi1-x-yCoxMnyO2 as Cathode Active Materials in Frequency Regulation Application for Power Systems

  • Choi, Jin Hyeok;Kwon, Soon-Jong;Lim, Jungho;Lim, Ji-Hun;Lee, Sung-Eun;Park, Kwangyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.461-466
    • /
    • 2020
  • There are many application fields of electrical energy storage such as load shifting, integration with renewables, frequency or voltage supports, and so on. Especially, the frequency regulation is needed to stabilize the electric power system, and there have to be more than 1 GW as power reserve in Korea. Ni-rich layered oxide cathode materials have been investigated as a cathode material for Li-ion batteries because of their higher discharge capacity and lower cost than lithium cobalt oxide. Nonetheless, most of them have been investigated using small coin cells, and therefore, there is a limit to understand the deterioration mode of Ni-rich layered oxides in commercial high energy Li-ion batteries. In this paper, the pouch-type 20 Ah-scale Li-ion full cells are fabricated using Ni-rich layered oxides as a cathode and graphite as an anode. Above all, two test conditions for the application of frequency regulation were established in order to examine the performances of cells. Then, the electrochemical performances of two types of Ni-rich layered oxides are compared, and the long-term performance and degradation mode of the cell using cathode material with high nickel contents among them were investigated in the frequency regulation conditions.