• 제목/요약/키워드: Potentiometric response

검색결과 84건 처리시간 0.023초

Potentiometric Characteristics of Ion-Selective Electrodes Based on Upper-Rim Calix[4]crown Neutral Carrier

  • 강유라;오현준;이경문;차근식;남학현;백경수;임혜재
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권2호
    • /
    • pp.207-211
    • /
    • 1998
  • Potentiometric characteristics of DOS plasticized PVC-based membranes containing upper-rim calix[4]crown neutral carrier to various metal cations and protonated alkylamines have been examined. Although the calix[4]crown-based membrane electrodes exhibited substantial emf responses to alkali and alkaline earth metal cations, their high detection limits (- log[Cs+]=4.5) and sub-Nernstian response slopes (48 mV/pCs+) to the most selective cation, cesium, indicate that the metal cation complexing ability of calix[4]crown is much weaker than that of macrocyclic crown ethers. However, the calix[4]crown-based membrane electrodes exhibited near-Nernstian response slopes (56 mV/decade for hexylNH3+) with low detection limits (log[hexylNH3+]= - 6.7) to most alkylammonium ions compared to those of blank (DOS plasticized PVC membrane with no ionophore) or crown ether-based membranes. While the selectivity patterns of blank and crown ether-based membranes are determined primarily by the lipophilicity of alkylammonium ions, the membranes doped with calix[4]crown ionophore could effectively discriminate the steric shapes of nonpolar alkyl groups of alkylammonium ions.

키틴 막 전극의 양이온에 대한 감응 연구 (Potentiometric Response of Chitin - based Membrane Electrode to various Metal cations)

  • 최분홍;윤영자
    • 분석과학
    • /
    • 제11권4호
    • /
    • pp.235-242
    • /
    • 1998
  • 이온 운반 물질로 키틴(poly-[$1{\rightarrow}4$]-${\beta}$-acetyl-D-glucosamine)을 사용하고, 지지체(matrix)로 Poly(vinyl chloride)(PVC)를, 가소제로는 Dioctyl sebacate(DOS)를 사용하여 키틴 막 전극을 제작하였다. 얇은 조각 형태의 키틴을 막자사발로 갈아 100 메시(mesh)의 체에 거른 후, 이때 모아진 일정 크기의 미세 가루를 사용하였다. 키틴 막 전극을 지시 전극으로 사용하여 금속 양이온들의 감응전위를 알아본 결과, 특히 $Cd^{2+}$$Cu^{2+}$에 대한 감응전위를 기울기(mV/decade)는 바탕 전해질이 pH 4 acetate buffer에서 각각 34.9 mV/decade, 34.0 mV/decade로 다른 금속 양이온들에 비하여 크게 나타났다. 또한 pH 영향을 조사해 본 결과, pH 2~12 범위에서 전위값이 일정하게 유지되었다.

  • PDF

The Potentiometric Performance of Mercury (II) Ion-Selective Electrode Based on Tetracycline Antibiotics

  • Baek, Jong-Gyu;Rhee Paeng, In-Sook
    • 전기화학회지
    • /
    • 제11권1호
    • /
    • pp.59-63
    • /
    • 2008
  • Poly (vinylchloride) (PVC) membrane electrodes based on neutral carrier, tetracycline was prepared as an active sensor for Hg(II) ion, and tested in different contents of the potassium tetrakis (4-chlorophenyl) borate (KTpClPB) as lipophilic salt. Bis (2-ethylhexyl) sebacate (DOS), bis(l-butylpentyl) adipate (BBPA), 2-nitrophenyl octyl ether (NPOE) and dibutyl phthalate (DBP) were used as diverse plasticizing solvent mediators. This electrode shows excellent potentiometric response characteristics and display good linearity with log $[Hg^{+2}]$ versus EMF response, over a range of concentrations between $10^{-7}$ and $10^{-3}M$. With 30.8mV/decade Nernstian slope, the detection limit was $6.9{\times}10^{-9}M$ and the response time was less than 20s. The proposed electrode yields very good selectivity for mercury (II) ion over many cations such as alkali, alkaline earth, transition and heavy metal ions. And it shows a very stable potential values in a wide pH range. This reliable electrode prepared was kept at least a month without considerable alteration in their response to Hg (II) ion.

전극평형전위차 가스 센싱 메커니즘을 적용한 일산화탄소 소형 전위차센서의 특성 향상에 관한 연구 (A Scientific Approach for Improving Sensitivity and Selectivity of Miniature, Solid-state, Potentiometric Carbon Monoxide Gas Sensors by Differential Electrode Equilibria Mechanism)

  • 박준영;김지현;박가영
    • 한국세라믹학회지
    • /
    • 제47권1호
    • /
    • pp.92-96
    • /
    • 2010
  • Based on the differential electrode equilibria approach, potentiometric YSZ sensors with semiconducting oxide electrodes for CO detection are developed. To improve the selectivity, sensitivity and response-time of the sensor, our strategy includes (a) selection of an oxide with a semiconducting response to CO, (b) addition of other semiconducting materials, (c) addition of a catalyst (Pd), (d) utilization of combined p- and n-type electrodes in one sensor configuration, and (e) optimization of operating temperatures. Excellent sensing performance is obtained by a novel device structure incorporating $La_2CuO_4$ electrodes on one side and $TiO_2$-based electrodes on opposite substrate faces with Pt contacts. The resulting response produces additive effects for the individual $La_2CuO_4$ and $TiO_2$-based electrodes voltages, thereby realizing an even higher CO sensitivity. The device also is highly selective to CO versus NO with minor sensitivity for NO concentration, compared to a notably large CO sensitivity.

A Novel Iron(III) Selective Membrane Electrode Containing a Tripodal Polycatacholamine as Sensor

  • Bera, Rati Kanta;Sahoo, Suban K;Baral, Minati;Kanungo, B.K.
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권10호
    • /
    • pp.3592-3596
    • /
    • 2011
  • A novel poly(vinylchloride)-based membrane sensor using $N^1$,$N^3$,$N^5$-tris(2-(2,3-dihydroxybenzylamino)-ethyl)cyclohexane-1,3,5-tricarboxamide (CYCOENCAT, L) as ionophore has been prepared and explored as $Fe^{3+}$ selective electrode. The membrane electrode composed of ionophore, poly(vinylchloride) and o-nitropheyloctyl ether in the optimum ratio 4:33:63 gave excellent potentiometric response characteristics, and displayed a linear log[$Fe^{3+}$] versus EMF response over a wide concentration range of $1.0{\times}10^{-5}-1.0{\times}10^{-1}$ M with super nernstian slope of 28.0 mV/decade and the detection limit of $8.0{\times}10^{-6}$ M. The proposed ion selective electrode showed fast response time (< 15 s), wide pH range (3.0-7.0), high non-aqueous tolerance (up to 20%) and adequate long life time (120 days). It also exhibited very good selectivity for $Fe^{3+}$ relative to a wide variety of alkali, alkaline earth, transition and heavy metal ions. Further, the analytical applicability of the sensor was tested as an indicator electrode in the potentiometric titration of $Fe^{3+}$ with EDTA.

A New Fe (III)-Selective Membrane Electrode Based on Fe (II) Phthalocyanine

  • Ozer, Tugba;Isildak, Ibrahim
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권3호
    • /
    • pp.321-328
    • /
    • 2019
  • A new miniaturized all solid-state contact Fe (III)-selective PVC membrane electrode based on Fe (II) phthalocyanine as a neutral carrier was described. The effects of the membrane composition and foreign ions on the electrode performance was investigated. The best performance was obtained with a membrane containing 32% poly (vinyl chloride), 64% dioctylsebacate, 3% Fe (II) phthalocyanine, and 1% potassium tetrakis (p-chlorophenyl) borate. The electrode showed near Nernstian response of $26.04{\pm}0.95mV/decade$ over the wide linear concentration range $1.0{\times}10^{-6}$ to $1.0{\times}10^{-1}M$, and a very low limit of detection $1.8{\pm}0.5{\times}10^{-7}M$. The potentiometric response of the developed electrode was independent at pH 3.5-5.7. The lifetime of the electrode was approximately 3 months and the response time was very short (< 7 s). It exhibited excellent selectivity towards Fe (III) over various cations. The miniaturized all solid-state contact Fe (III)-selective membrane electrode was successfully applied as an indicator electrode for the potentiometric titration of $1.0{\times}10^{-3}M$ Fe (III) ions with a $1.0{\times}10^{-2}M$ EDTA and the direct determination of Fe (III) ions in real water samples.

Ammonium Ion Binding Property of Naphtho-Crown Ethers Containing Thiazole as Sub-Cyclic Unit

  • Kim, Hong-Seok;Do, Kyung-Soon;Kim, Ki-Soo;Shim, Jun-Ho;Cha, Geun-Sig;Nam, Hak-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권10호
    • /
    • pp.1465-1470
    • /
    • 2004
  • A short and efficient synthesis, solvent extraction and potentiometric measurements of new thiazole-containing naphtho-crown ethers are reported. The naphthalene moiety enhances the ammonium ion selectivity over potassium ion. The selectivity of ${NH_4}^+/K^+$ follows the trend $3\;{\approx}\;2\;>\;1$, indicating that the differences in conformational changes of 2 and 3 in forming ammonium complexes affect little on the resulting ammonium/potassium extraction selectivity ratio. The ammonium ion-selective electrodes were prepared with noctylphenyl ether plasticized poly(vinyl chloride) membranes containing 1-4 the effect of one naphthalene unit introduced on either right (2) or left (3) side of thiazolo-crown ether on their potentiometric properties (e.g., ammonium ion selectivity over other cations, response slopes, and detection limits) were not apparent. However, the ammonium ion selectivity of 1, 2 and 3 over other alkali metal and alkaline earth metal cations is 10-100 times higher than that of nonactin.

액체막형 구리이온 선택성 전극의 제작과 전위차적정에의 응용 (Preparation of a Liquid Membrance Type Ion-Selective Electrode and Its Application to the Potentiometric Titration)

  • 이흥낙;양승태
    • 대한화학회지
    • /
    • 제29권2호
    • /
    • pp.137-143
    • /
    • 1985
  • 액체막형 구리이온 선택성 전극의 제작과 전위차적정에의 응용을 연구하였다. 액체 이온교환막은 수용액속의 Cu(II)을 1-(2-pyridylazo)-2-naphthol/nitrobenzene 용액 속으로 추출하여 만들었다. 액체 이온교환막 위에 HAc-NaAc 용액으로 완충된 $1.00 {\times} 10^{-3}M\;Cu(NO_3)_2$ 용액을 채우고 Ag/AgCl 내부 기준전극을 담그었다. 이 이온선택성 전극은 $1.00 {\times} 10^{-6}$ ~ $1.00 {\times} 10^{-3}$M Cu(II) 농도 범위에서 nerstian response를 보여주었다. 가장 적절한 이온교환체의 농도는 $1.00 {\times} 10^{-4}$M이었다. 여러가지 금속이온에 대한 이온선택성 전극의 선택계수를 측정하였다. EDTA를 적정제로 하여 Cu(II)에 대한 전위차적정에 응용하였다.

  • PDF

A Solid-Contact Indium(III) Sensor based on a Thiosulfinate Ionophore Derived from Omeprazole

  • Abbas, Mohammad Nooredeen;Amer, Hend Samy
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1153-1159
    • /
    • 2013
  • A novel solid-contact indium(III)-selective sensor based on bis-(1H-benzimidazole-5-methoxy-2-[(4-methoxy-3, 5-dimethyl-1-pyridinyl) 2-methyl]) thiosulfinate, known as an omeprazole dimer (OD) and a neutral ionophore, was constructed, and its performance characteristics were evaluated. The sensor was prepared by applying a membrane cocktail containing the ionophore to a graphite rod pre-coated with polyethylene dioxythiophene (PEDOT) conducting polymer as the ion-to-electron transducer. The membrane contained 3.6% OD, 2.3% oleic acid (OA) and 62% dioctyl phthalate (DOP) as the solvent mediator in PVC and produced a good potentiometric response to indium(III) ions with a Nernstian slope of 19.09 mV/decade. The constructed sensor possessed a linear concentration range from $3{\times}10^{-7}$ to $1{\times}10^{-2}$ M and a lower detection limit (LDL) of $1{\times}10^{-7}$ M indium(III) over a pH range of 4.0-7.0. It also displayed a fast response time and good selectivity for indium(III) over several other ions. The sensor can be used for longer than three months without any considerable divergence in potential. The sensor was utilized for direct and flow injection potentiometric (FIP) determination of indium(III) in alloys. The parameters that control the flow injection method were optimized. Indium(III) was quantitatively recovered, and the results agreed with those obtained using atomic absorption spectrophotometry, as confirmed by the f and t values. The sensor was also utilized as an indicator electrode for the potentiometric titration of fluoride in the presence of chloride, bromide, iodide and thiocyanate ions using indium(III) nitrate as the titrant.

Novel Triiodide PVC-Based Membrane Sensor Based on a Charge Transfer Complex of Iodine and Bis(2-hydroxyacetophenone)butane-2,3-dihydrazone

  • Ganjali, Mohammad Reza;Norouzi, Parviz;Shirvani Arani, Simindokht;Salavati Niasari, Masoud
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권11호
    • /
    • pp.1738-1742
    • /
    • 2005
  • In this study a novel triiodide ion-selective electrode based on a charge transfer complex of iodine and Bis(2-hydroxyacetophenone)butane-2,3-dihydrazone (ICT), as a membrane carrier was prepared. The electrode has a linear dynamic range between 1.0 ${\times}$ $10^{-2}$ and 5.0 ${\times}$ $10^{-7}$ M, with a Nernstian slope of 58. 99 ${\pm}$ 0.3 mV $decade^{-1}$ and detection limit of 3.0 ${\times}$ $10 ^{-7}$ M. The potentiometric response of the proposed sensor is independent of the pH of the solution in the pH range of 3.0-10.0. The electrode possesses the advantages of short conditioning time, fast response time, and especially, very good selectivity over a large number of common organic and inorganic anions. The electrode can be used for at least 6 months without any considerable divergences in the potentials. It was used as an indicator electrode in potentiometric titration of triiodide ion with thiosulfate.