• Title/Summary/Keyword: Potentiometric

Search Result 239, Processing Time 0.018 seconds

Light addressable potentiometric penicillin sensor using Ta2O5 sensing membrane (Ta2O5 감지막의 광지시 전위차형 페니실린 센서)

  • Lee, Sun-Young;Jang, Su-Won;Kim, Jae-Ho;Kwon, Dae-Hyuk;Kim, Eung-Soo;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.192-198
    • /
    • 2006
  • In this study, the light addressable potentiometric sensors (LAPS) with $Si_{3}N_{4}/SiO_{2}/Si$, and $Ta_{2}O_{5}/SiO_{2}/Si$ structures were fabricated. The penicillinsae was immobilized on the devices to hydrolyze the penicillin using self-assembled monolayer (SAM) method. Then response characteristics according to the penicillin concentrations were measured and compared. The measuring system was simplified by using LabVIEW. The pH response characteristics of fabricated devices are 56 mV/pH ($Si_{3}N_{4}$ sensing membrane) and 61 mV/pH ($Ta_{2}O_{5}$ sensing membrane). The sensitivity of sensor by enzyme reaction result of the enzyme reaction were 60 mV/decade and 74 mV/decade for $Si_{3}N_{4}/SiO_{2}/Si$ and $Ta_{2}O_{5}/SiO_{2}/Si$ structure, respectively, in the range of $0.1\;mM{\sim}10\;mM $of the penicillin concentration.

Fabrication and Response Characteristics of the Light Addressable Potentiometric Sensor for Detecting the Penicillin Concentration (페니실린 농도 검출을 위한 광지시형 전위차 센서의 제작 및 감응특성)

  • Jang, Su-Won;Jung, Young-Hee;Park, Jin-Ho;Kim, Jea-Ho;Kwon, Dae-Hyuk;Lee, Seung-Ha;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.356-362
    • /
    • 2004
  • In this study, we developed the measuring system based on light addressable potentiometric sensor for the quantitative analysis of penicillin that is very important element in medicine and pharmacy, clinic. It is investigated the response characteristics by enzyme reaction with penicillinase. First, the surface pre-treatment process of the $Si_{3}N_{4}$ was established. The coupling agent was made using self assembled monolayer method and it was confirmed the immobilization process by AFM. Also, as the measuring system, potentiostat, signal processing part etc. was made by Lab VIEW software, it was reduced detecting time as well as simplifying the system. Fabricated device was shown excellent pH response characteristics, 57 mV/ pH in the range of pH $2{\sim}11$. The response characteristics was 60 mV/decade in the range of $0.1{\sim}10{\;}mM$.

Determination of Verapamil with ISE based on Ion Exchanger (이온교환체 전극을 이용한 베라파밀 정량)

  • Lee, Eun-Yup;Kim, Dong-O;Chang, Seung-Hyun;Hur, Moon-Hye;Ahn, Moon-Kyu
    • YAKHAK HOEJI
    • /
    • v.40 no.2
    • /
    • pp.135-140
    • /
    • 1996
  • Ion-selective poly(vinyl chloride)(PVC) membrane electrodes for the determination of the calcium antagonist verapamil and its pharmaceutical preparations were described. Verapam il-superchrome garnet Y(SGY), lumogallion(LG), acid red 97(AR97), Dragendorff(DD) and Meyer reagent ion pairs were inverstigated as an electroactive compound for membrane electrode. Stable potentiometric response was obtained with azo dye at pH 6.5-4.0 and with DD, and Meyer reagent at pH 6.5-3.0. The best plasticizer was 49w/w% 2-nitrophenyl octyl ether for azo dye, and 65.3w/w% tri(n-butyl) citrate for DD and Meyer reagent. Potentiometric response slopes of optimized membrane electrodes based on SGY, LG, AR97, DD, and Meyer complex for verapamil were 52.49, 54.88, 50.81, 54.13 and 49.31 mV/dec., respectively. Lower limits of linear range were $1.0{\times}10^6M$ for SGY, LG, and AR97, while those for DD and Meyer reagent were $4{\times}10^{-6}M$. Detection limits for all these electrodes were $1{\times}10^{-5}M,\;4{\times}10^{-6}M,\;1.8{\times}10^{-6}M,\;8{\times}10^{-7}M,\;and\;1{\times}10^{-6}M$ with relative standard deviation of 2.56, 3.6, 3.96, 2.56, 3.20%, respectively.

  • PDF

Electronic Tongue Composed of Mini-Electrode Array in Flow Cell (소형전극 어레이로 구성한 흐름계형 전자혀)

  • Shim, Jun Ho;Shim, Jae Hoon;Seo, Sung Seok;Oh, Hyun Joon;Han, Jong Ho;Nam, Hakhyun;Cha, Geun Sig
    • Analytical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.217-224
    • /
    • 2004
  • A taste sensor system composed of mini electrode array was built in a flow cell. Potentiometric signals from 9 electrodes were collected for drinking waters and alcoholic beverages which were diluted in a low concentration buffer solution (0.005 M Tris-$H_2SO_4$ pH 7.2) for the measurement. The measured results were treated with the principal component analysis (PCA), and grouped on a two or three dimensional PCA coordinate to discriminate the tastes of each beverage. It is demonstrated that the taste sensor system of this work may be used for the quality control of beverages in production or the examination of their taste variation in the market.

Organopalladium(II) Complexes as Ionophores for Thiocyanate Ion-Selective Electrodes

  • Kim, Dong-Wan;Lee, So-Hyun;Kim, Jung-Hwan;Kim, Jin-Eun;Park, Jong-Keun;Kim, Jae-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2303-2308
    • /
    • 2009
  • A thiocyanate poly(vinyl chloride) (PVC) membrane electrode based on [1,2-bis(diphenylphosphino)ethane]dihalopalladium( II), [(dppe)$PdX_2$, X = Cl ($L^1$), X = I ($L^2$)] as active sensor has been developed. The diiodopalladium complex, [(dppe)$PdI_2](L^2$) displays an anti-Hofmeister selectivity sequence: $SCN^-\;>\;I^-\;>\;{ClO_4}^-\;>\;Sal^-\;>\;Br^-\;>\;{NO_2}^-\;>\;{HPO_4}^-\;>\;AcO^-\;>\;{NO_3}^-\;>\;{H_2PO_4}^-\;>\;{CO_3}^{2-}$. The electrode exhibits a Nernstian response (-59.8 mV/decade) over a wide linear concentration range of thiocyanate ($(1.0\;{\times}\;10^{-1}\;to\;5.0\;{\times}\;10^{-6}$ M), low detection limit ($(1.1\;{\times}\;10^{-6}$ M), fast response $(t_{90%}$ = 24 s), and applicability over a wide pH range (3.5∼11). Addition of anionic sites, potassium tetrakis[p-chlorophenyl] borate (KTpClPB) is shown to improve potentiometric anion selectivity, suggesting that the palladium complex may operate as a partially charged carrier-type ionophore within the polymer membrane phase. The reaction mechanism is discussed with respect to UV-Vis and IR spectroscopy. Application of the electrode to the potentiometric titration of thiocyanate ion with silver nitrate is reported.

Novel Silver(I) Ion Selective PVC Membrane Electrode Based on the Schiff Base (N2E,N2'E)-N2,N2'-Bis(Thiophen-2-ylmethylene)-1,1'-Binaphthyl-2,2'-Diamine

  • Jeong, Eunseon;Ahmed, Mohammad Shamsuddin;Jeong, Hae-Sang;Lee, Eun-Hee;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.800-804
    • /
    • 2011
  • A potentiometric sensor based on the Schiff base $(N^2E,N^{2'}E)-N^2,N^{2'}$-bis(thiophen-2-ylmethylene)-1,1'-binaphthl-2,2'-diamine has been synthesized and explored as an ionophore PVC-based membrane sensor selective for the silver ($Ag^+$) ion. Potentiometric investigations indicate a high affinity of this receptor for the silver ion. Seven membranes have been fabricated with different compositions, with the best performance shown by the membrane with an ionophore composition (w/w) of: 1.0 mg, PVC: 33.0 mg, DOA: 66.0 mg in 1.0 mL THF. The sensor worked well within a wide concentration range of $1.0{\times}10^{-2}$ to $1.0{\times}10^{-7}$ M, at pH 5, at room temperature (slope 57.4 mV/dec.), and with a rapid response time of 9 s; the sensor also showed good selectivity towards the silver ion over a huge number of interfering cations, with the highest selectivity coefficient for $Hg^{2+}$ at -3.7. Thus far, the best lower detection limit was $4.0{\times}10^{-8}$ M.

Quantitative Analysis of Citrate in Foods Using a Potentiometric Enzyme Biosensor (전위차법 효소 바이오센서를 이용한 식품의 구연산 정량분석)

  • Kwon, Ji-Young;Kim, Mee-Ra
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.169-175
    • /
    • 2006
  • Potentiometric biosensor using flow injection analysis system was developed to determine citrate concentration in foods. Biosensor system consisted of sample injector, peristaltic pump, enzyme reactor, carbonate ion selective solid-state electrode, reference electrode, detector, and recorder. Enzyme reactor was prepared with immobilized citrate lyase and oxaloacetate decarboxylase. Carbonate ions produced through enzyme reactions of citrate were potentiometrically detected by ion selective electrode. Optimum conditions for biosensor system were investigated. Interference effect of major sugars and organic acids was less than 5% on citrate biosensor system. Citrate concentrations in fruit juices were determined by biosensor and gas chromatography. No significant difference was observed between two analytical methods. Results indicate citrate biosensor is useful in determining citrate concentration in foods.

Fabrication of Potentiometric Sodium-ion Sensor Based on Carbon and Silver Inks and its Electrochemical Characteristics (탄소 및 은 잉크 기반의 전위차 나트륨 이온 센서 제조 및 이의 전기화학적 특성)

  • Kim, Seo Jin;Son, Seon Gyu;Yoon, Jo Hee;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.456-460
    • /
    • 2021
  • A potentiometric sodium-ion (Na+) sensor was prepared using a screen-printing process with carbon and silver inks. The two-electrode configuration of the sensor resulted in potential differences in Na+ solutions according to Nernstian equation. The obtained Na+-sensor exhibited an ideal Nernstian sensitivity, fast response time, and low limit of detection. The Nernstian response was stable when the sensor was tested for repeatability and long-term durability. The Na+-selective membrane coated onto the carbon electrode selectively passed sodium ions against interfering ions, indicating an excellent selectivity. The portable Na+-sensor was finally fabricated using a printed circuit system, demonstrating the successful measurements of Na+ concentrations in various real samples.

Stability Constants of First-row Transition Metal and Trivalent Lanthanide Metal Ion Complexes with Macrocyclic Tetraazatetraacetic and Tetraazatetramethylacetic Acids

  • 홍춘표;김동원;최기영;김창태;최용규
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.297-300
    • /
    • 1999
  • The protonation constants of the macrocyclic ligands, 1,4-dioxa-7,10,13,16-tetraaza-cyclooctadecane-N,N',N",N"'-tetra(acetic acid) [N-ac4[18]aneN402] and 1,4-dioxa-7,10,13,16-tetraazacyclooctadecane-1,4-dioxa-7,10,13,16-N,N',N",N"'-tetra(methylacetic acid) [N-meac4[18]aneN4O2] have been determined by using potentiometric method. The protonation constants of the N-ac4[18]aneN4O2 were 9.31 for logK1H, 8.94 for logK2H, 7.82 for logK3H, 4.48 for logK4H and 2.94 for logK5H. And the protonation constants of the N-meac4[18]aneN4O2 were 9.34 for logK1H, 9.13 for logK2H, 8.05 for logK3H, 5.86 for logK4H, and 3.55 for logK5H. The stability constants of complexes on the divalent transition ions (Co2+, Ni2+, Cu2+, and Zn2+) and tiivalent metal ions (Ce3+, Eu3+, Gd3+, and Yb3+) with ligands N-ac4[18]-aneN4O2 and N-meac4[18]aneN4O2 have been obtained from the potentiometric data with the aid of the BEST program. The three higher values of the protonation constants for synthesized macrocyclic ligands correspond to the protonation of nitrogen atoms, and the fourth and fifth values correspond to the protonation of the carboxylate groups for the N-ac4[18]aneN4O2 and N-meac4[18]aneN4O2. The meatal ion affinities of the two tetra-azamacrocyclic ligands with four pendant acetate donor groups or methylacetate donor groups are compared. The effects of the metal ions on the stabilities are discussed, and the trends in stability constants resulting from changing the macrocyclic ring with pendant donor groups and acidity of the metal ions.

A New PVC-Membrane Electrode Based on a Thia-Substituted Macrocyclic Diamide for Selective Potentiometric Determination of Silver Ion

  • Shamsipur, Mojtaba;Kazemi, Sayed Yahya;Niknam, Khodabaksh;Sharghi, Hashem
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.53-58
    • /
    • 2002
  • A new PVC-membrane electrode for $Ag^+$ ion based on a thia-substituted macrocyclic diamide has been prepared. The electrode exhibited a Nernstian response for $Ag^+$ over a wide concentration range $(1.7{\times}10^{-6}-1.0{\times}10^{-1}M)$. It has a response time <15 s and can be used for at least 3 months without divergence. The proposed membrane sensor revealed good selectivities for $Ag^+$ over a variety of metal ions and can be used in a pH range 3.0-7.5. It has been used successfully for direct determination of $Ag^+$ in different real samples and, as an indicator electrode, in the titration of silver ion.