DOI QR코드

DOI QR Code

Light addressable potentiometric penicillin sensor using Ta2O5 sensing membrane

Ta2O5 감지막의 광지시 전위차형 페니실린 센서

  • Lee, Sun-Young (Department of Electronic Engineering, Kyungpook National University) ;
  • Jang, Su-Won (Department of Electronic Engineering, Kyungpook National University) ;
  • Kim, Jae-Ho (Department of Molecular Science and Technology, Ajou University) ;
  • Kwon, Dae-Hyuk (Department of Electronic and Information Engineering, Kyungil University) ;
  • Kim, Eung-Soo (Division of Digital and Information Engineering, Pusan University of Foreign Studies) ;
  • Kang, Shin-Won (School of Electrical Engineering and Computer Science, Kyungpook National University)
  • 이선영 (경북대학교 대학원 전자공학과) ;
  • 장수원 (경북대학교 대학원 전자공학과) ;
  • 김재호 (아주대학교 분자과학기술학과) ;
  • 권대혁 (경일대학교 전자정보통신공학부) ;
  • 김응수 (부산외국어대학교 디지털정보공학부) ;
  • 강신원 (경북대학교 전자전기컴퓨터학부)
  • Published : 2006.05.31

Abstract

In this study, the light addressable potentiometric sensors (LAPS) with $Si_{3}N_{4}/SiO_{2}/Si$, and $Ta_{2}O_{5}/SiO_{2}/Si$ structures were fabricated. The penicillinsae was immobilized on the devices to hydrolyze the penicillin using self-assembled monolayer (SAM) method. Then response characteristics according to the penicillin concentrations were measured and compared. The measuring system was simplified by using LabVIEW. The pH response characteristics of fabricated devices are 56 mV/pH ($Si_{3}N_{4}$ sensing membrane) and 61 mV/pH ($Ta_{2}O_{5}$ sensing membrane). The sensitivity of sensor by enzyme reaction result of the enzyme reaction were 60 mV/decade and 74 mV/decade for $Si_{3}N_{4}/SiO_{2}/Si$ and $Ta_{2}O_{5}/SiO_{2}/Si$ structure, respectively, in the range of $0.1\;mM{\sim}10\;mM $of the penicillin concentration.

Keywords

References

  1. S. Caras and J. Janata, 'Field-effect transistor sensitive to penicillin', Anal. Chem., vol. 52, pp. 19351937, 1980 https://doi.org/10.1021/ac50062a035
  2. A. Poghossian, M. J. Schoning, P. Schroth, A. Simonis, and H. Lilth, 'An ISFET-based penicillin sensor with high sensitivity, low deection limit and long lifetime', Sensors and Actuators B, vol. 76, pp. 519526, 2001
  3. A. P. Soldatkin, J. Montoriol, W. Sant, X. Martelet, and N. Jaffrezic-Renault, 'A novel urea sensitive biosensor with extended dynamic range based on recombination urease and ISFETs', Biosensors and Bioelectronics, vol. 19, pp. 131-135, 2003 https://doi.org/10.1016/S0956-5663(03)00175-1
  4. J. Koita, 'Ion-selective electrode', Cambridge Univ. Press, cambridge, Chap 2, 1975
  5. A. Seki, S. I. Ikeda, I. Kubo, and I. Karube, 'Biosensors based on light-addressable potentiometric sensors for urea, penicillin and glucose', Analytica chimica Acta, vol. 373, pp. 9-13, 1998 https://doi.org/10.1016/S0003-2670(98)00364-X
  6. 장수원, 저영희, 박진호, 김재호, 권대혁, 이승하, 강신원, '페니실린 농도 검출을 위한 광지시형 전위차 센서의 제작 및 감응특성', 센서학회지, 제13권, 제5호, pp. 356-362, 2004. https://doi.org/10.5369/JSST.2004.13.5.356
  7. F. Hafner, 'Cytosensor microphysiometer : technology and recent applications', Biosensors and Bioelectronics, vol. 15, pp. 149-158, 2000 https://doi.org/10.1016/S0956-5663(00)00069-5
  8. S. Inoue, M. Nakao, T. Yoshinobu, and H. Iwasaki, 'Chemical-imaging sensor using enzyme', Sensors and Actuators B, vol. 32, pp. 23-26, 1996 https://doi.org/10.1016/0925-4005(96)80104-3
  9. K. Dill, L. H. Stanker, and C. R. Young, 'Detection of salmonella in poultry using a silicon chip-based biosensor' , J. Biochem. Biophys. Methods, vol. 41, pp. 61-67, 1999 https://doi.org/10.1016/S0165-022X(99)00027-5
  10. L. Bousse, J. C. Owicki, and J. W. Parce, 'Biosensors with microvo lume reaction chamber', Chemical Sensor Technology, vol. 4, pp.145-166, 1992

Cited by

  1. Development of a multi channel measurement system for the cellular respiration measurement vol.19, pp.1, 2010, https://doi.org/10.5369/JSST.2010.19.1.036