• 제목/요약/키워드: Potential radionuclides

검색결과 54건 처리시간 0.025초

PET을 이용한 심근생존능의 평가 (Assessment of Myocardial Viability Using PET)

  • 윤석남
    • 대한핵의학회지
    • /
    • 제39권2호
    • /
    • pp.133-140
    • /
    • 2005
  • The potential for recovery of left ventricular dysfunction after myocardial revascularization represents a practical clinical definition for myocardial viability. The evaluation of viable myocardium in patients with severe global left ventricular dysfunction due to coronary artery disease and with regional dysfunction after acute myocardial infarction is an important issue whether left ventricular dysfunction may be reversible or irreversible after therapy. If the dysfunction is due to stunning or hibernation, functional improvement is observed. but stunned myocardium may recover of dysfunction with no revascularization. Hibernation is chronic process due to chronic reduction in the resting myocardial blood flow. There are two types of myocardial hibernation: "functional hibernation" with preserved contractile reserve and "structural hibernation" without contractile reserve in segments with preserved glucose metabolism. This review focus on the application of F-18 FDG and other radionuclides to evaluate myocardial viability. In addition the factors influencing predictive value of FDG imaging for evaluating viability and the different criteria for viability are also reviewed.

고준위 방사성폐기물 처분장에서 초기 용기 파손 시나리오의 장기 방사선적 안전성 평가 (Post Closure Long Term Safety of an Initial Container Failure Scenario for a Potential HLW Repository)

  • 황용수;서은진;이연명;강철형
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2003년도 가을 학술논문집
    • /
    • pp.229-232
    • /
    • 2003
  • 고준위 방사성폐기물 처분장에서 적용하고 있는 다중 방벽의 한 부분인 처분 용기는 벤토나이트 완충재의 팽윤과 지압으로부터 폐기물을 역학적으로 안전하게 보호함과 동시에 일정 기간 방사성폐기물의 유출을 억제하는 역할을 한다. 용기는 엄격한 재질 선정과 품질 보증을 거쳐 건전성을 확보하나 보수적인 관점에서 보면 용기 제작 과정이나 수송 중 예상치 못한 사건으로 인해 불량품이 발생할 개연성이 있다. 본 연구에서는 이와 같은 사고 시나리오를 가정할 경우 불량 용기를 포함한 전체 용기에 거치된 방사성폐기물의 시간에 따른 환경 위해도를 평가하였다. 본 연구결과 일부 처분 용기에 초기 파손이 발생하더라도 규제치를 잘 만족하는 것으로 판명되었다.

  • PDF

Influence of EDZ on the Safety of a Potential HLW Repository

  • 황용수;강철형
    • 방사성폐기물학회지
    • /
    • 제2권4호
    • /
    • pp.253-262
    • /
    • 2004
  • Construction of tunnels in a deep crystalline host rock for a potential High-Level Radioactive Waste(HLW) repository inevitably generates an excavation disturbed zone (EDZ). There have been a series of debates on whether a permeability in an EDZ increases or not and what would be the maximum depth of an EDZ. Recent studies show mixed opinions on permeability. However, there has been an international consensus on the thickness of an EDZ; 30 cm for TBM and 1 meter for controlled blast. One of the impacts of an EDZ is on determining the distance between adjacent deposition holes. The void gap by the excavation hinders relaxation of temperature profiles so that the current Korean reference designing distance between holes should be stretched out more to keep the maximum temperature in a buffer region below 100 degrees Celsius. The other impact of an EDZ is on the long-term post closure radiological safety. To estimate the impact, the reference scenario, the well scenario, is chosen. Released nuclides diffuse through a bentonite buffer region experiencing strong sorption and reach a fracture surrounded by a porous medium. Inside a fractured porous region, radionuclides migrate by advection and dispersion with matrix diffusion into a porous medium. Finally, they reach a well assumed to be a source of potable water for local residents. The annual individual dose is assessed on this well scenario to find out the significance of an EDZ. A profound sensitivity study was performed, but all results show that the impact is negligible. Even though the role of an EDZ turns out to be limited on overall safety assessment, still it is worthwhile to study the chemical role of an EDZ, such as a potential source for natural colloids, potential sealing of an open fracture by fine clay particles generated by the process of an EDZ, and alteration of a sorption mechanism by an EDZ in the future.

  • PDF

고준위 방사성폐기물 처분장 불량 용기 발생 시나리오에 대한 폐쇄후 장기 방사선적 안전성 평가 (Post Closure Long Term Safely of the Initial Container Failure Scenario for a Potential HLW Repository)

  • 황용수;서은진;이연명;강철형
    • 방사성폐기물학회지
    • /
    • 제2권2호
    • /
    • pp.105-112
    • /
    • 2004
  • 고준위 방사성폐기물 처분장에서 적용하고 있는 다중 방벽의 한 부분인 처분 용기는 벤토나이트 완충재의 팽윤과 지압으로부터 폐기물을 역학적으로 안정하게 보호함과 동시에 일정 기간 방사성폐기물의 유출을 억제하는 역할을 한다. 처분용기의 건전성은 엄격한 재질 선정과 품질 보증을 통해 확보된다. 그러나 용기 제작 과정이나 수송 중 예상치 못한 사건으로 인해 불량 용기가 발생할 가능성이 있다. 본 논문에서는 이와 같은 경우 방사성폐기물로 인해 생태계에 미치는 환경 영향을 연간 개인 선량으로 평가하였다. 연구결과 일부 불량 처분 용기가 발생하더라도 현 평가에 사용한 입력 데이터 범위에서는, 국내 고준위 방사성폐기물 처분 개념이 방사선적 안전성을 확보할 수 있는 것으로 판명되었다.

  • PDF

한국 심부 지하수 환경에서의 방사성 핵종(우라늄, 플루토늄, 팔라듐)의 지화학적 거동 모델링 (Geochemical Modeling on Behaviors of Radionuclides (U, Pu, Pd) in Deep Groundwater Environments of South Korea)

  • 최재훈;박선주;서현수;안현태;이정환;박정훈;윤성택
    • 자원환경지질
    • /
    • 제56권6호
    • /
    • pp.847-870
    • /
    • 2023
  • 고준위 방사성폐기물을 심지층에 안전하게 처분하기 위해서는 방사성 핵종의 장기적 지구화학 거동에 대한 정확한 예측이 요구된다. 이와 관련하여 본 연구에서는 국내 심부 지하수를 대표하는 다섯가지 지화학 환경 조건에서 지화학 모델링을 수행하여 일부 방사성 핵종의 지화학 거동을 예측하였다. 다섯가지 국내 심부 지하수의 지화학 환경은 다음과 같다: 고 TDS 염지하수(G1), 산성 pH의 CO2가 풍부한 지하수(G2), 고 pH 알칼리성 지하수(G3), 황산염이 풍부한 지하수(G4), 묽은(담수) 지하수(G5). 3~12의 pH 범위와 ±0.2V의 산화-환원전위(Eh) 조건에서 일부 방사성 핵종(우라늄, 플루토늄, 팔라듐)의 국내 심부 지하수 내에서의 용해도와 화학종(존재형태)을 예측하였다. 모델링 결과, 용존 상태의 우라늄은 주로 U(IV)로서 중성~알칼리성의 넓은 pH 환경에서 높은 용해도를 보였으며, Eh가 -0.2V인 환원 환경에서도 알칼리 pH 조건에서 높은 용해도를 보였다. 이러한 높은 용해도는 주로 Ca-U-CO3 착물의 형성에 의한 것으로 예측되는데, 이 착물의 활동도(activity)는 국내 심부 지하수 중 주요 단층대를 따라 산출되는 G2와 화강암반에 위치하는 G3에서 높다. 한편, 플루토늄(Pu)의 용해도는 pH에 따라 달라지며, 특히 중성~알칼리성 조건에서 가장 낮은 용해도가 나타난다. 주요 화학종은 Pu(IV)와 Pu(III)이며, 이들은 주로 흡착을 통해 제거될 것으로 추정된다. 그러나 콜로이드에 의한 이동을 고려하면, 이온강도가 낮은 심부 지하수인 G3와 G5 유형에서 콜로이드 형성 및 이동 촉진에 따라 이동성이 증가할 것으로 예상된다. 팔라듐(Pd)은 환원 환경에서는 황화물 침전 반응으로 인해 낮은 용해도를 나타내며, 산화 환경에서는 주로 금속(수)산화물에의 흡착을 통해 Pd(OH)3-, PdCl3(OH)2-, PdCl42- 및 Pd(CO3)22-와 같은 음이온 착물이 제거될 것으로 판단된다. 본 연구는 한국의 심부 지하수 환경에서 방사성 핵종의 운명과 이동에 대한 이해를 높이고, 고준위 방사성 폐기물의 안전한 처분을 위한 전략 개발에 기여할 것으로 기대된다.

Biosorption of uranium by Bacillus sp.FB12 isolated from the vicinity of a power plant

  • Xu, Xiaoping;He, Shengbin;Wang, Zhenshou;Zhou, Yang;Lan, Jing
    • Advances in environmental research
    • /
    • 제2권3호
    • /
    • pp.245-260
    • /
    • 2013
  • Biosorption represents a technological innovation as well as a cost effective excellent remediation technology for cleaning up radionuclides from aqueous environment. In the present study, a bacteria strain FB12 with high adsorption rate of uranium ion was isolated from the vicinity of the nuclear power plant. It was tentatively identified as Bacillus sp.FB12 according to the 16S rDNA sequencing. Efforts were made to further improve the adsorption rate and genetic stability by UV irradiation and UV-LiCl cooperative mutagenesis. The improved strain named Bacillus sp.UV32 obtains excellent genetic stability and a high adsorption rate of 95.9%. The adsorption of uranium U (VI) by Bacillus sp.UV32 from aqueous solution was examined as a function of metal ion concentration, cell concentration, adsorption time, pH, temperature, and the presence of some foreign ions. The adsorption process of U (VI) was found to follow the pseudo-second-order kinetic equation. The adsorption isotherm study indicated that it preferably followed the Langmuir adsorption isotherm. The thermodynamic parameters values calculated clearly indicated that the adsorption process was feasible, spontaneous and endothermic in nature. These properties show that Bacillus sp.UV32 has potential application in the removal of uranium (VI) from the radioactive wastewater.

Effects of Temperature and Pressure on Quartz Dissolution

  • Choi, Jung-Hae;Chae, Byung-Gon;Kim, Hye-Jin
    • 지질공학
    • /
    • 제25권1호
    • /
    • pp.1-8
    • /
    • 2015
  • Deep geological disposal is the preferred storage method for high-level radioactive waste, because it ensures stable long-term storage with minimal potential for human disruption. Because of the risk of groundwater contamination, a buffer of steel and bentonite layers has been proposed to prevent the leaching of radionuclides into groundwater. Quartz is one of the most common minerals in earth's crust. To understand how deformation and dissolution phenomena affect waste disposal, here we study quartz samples at pressure, temperature, and pH conditions typical of deep geological disposal sites. We perform a dissolution experiment for single quartz crystals under different pressure and temperature conditions. Solution samples are collected and the dissolution rate is calculated by analyzing Si concentrations in a solution excited by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). After completing the dissolution experiment, deformation of the quartz sample surfaces is investigated with a confocal laser scanning microscope (CLSM). An empirical formula is introduced that describes the relationship between dissolution rate, pressure, and temperature. These results suggest that bentonite layers in engineering barrier systems may be vulnerable to thermal deformation, even when exposed to higher temperatures on relatively short timescales.

방사선 사고와 급성 방사선 증후군 (Radiological Accident and Acute Radiation Syndrome)

  • 노형근
    • 대한임상독성학회지
    • /
    • 제9권2호
    • /
    • pp.39-48
    • /
    • 2011
  • In mass casualty situation due to radiological accidents, it is important to start aggressive management with rapid triage decisions. External contamination needs immediate decontamination and internal contamination should be treated with special expertise and equipment to prevent the rapid uptake of radionuclides by target organs. Acute radiation syndrome shows a sequence of events that varies with the severity of the exposure. More severe exposures generally lead to more rapid onset of symptoms and severe clinical findings. After the massive exposure, various systems of the body reflect their severe damages that can lead to death within hours or up to several months. The disease progression has classically been divided into four stages: prodromal, latent, manifest illness, and recovery or death. Three characteristic clusters of symptoms including the hematopoietic syndrome, the gastrointestinal syndrome and the cerebrovascular syndrome are all associated with the acute radiation syndrome. The standard medical management of the patients with a potentially survivable radiation exposure includes good medical, surgical and supportive measures. Specific treatment with cytokines and bone marrow transplantation should be considered. The management of internal contamination is much the same as the treatment of poisoning. The standard decontamination should be applied to reduce uptake, and the chelating agents can be administered to enhance the clearance of radioisotopes. Radioactive iodine ($^{131}I$) as one of the nuclear fission products can increase the incidence of thyroid cancer in children. Potential benefit of potassium iodide prophylaxis is greater especially in neonates, infants and small children.

  • PDF

Development of a Computer Code for Low-and Intermediate-Level Radioactive Waste Disposal Safety Assessment

  • Park, J.W.;Kim, C.L.;Lee, E.Y.;Lee, Y.M.;Kang, C.H.;Zhou, W.;Kozak, M.W.
    • Journal of Radiation Protection and Research
    • /
    • 제29권1호
    • /
    • pp.41-48
    • /
    • 2004
  • A safety assessment code, called SAGE (Safety Assessment Groundwater Evaluation), has been developed to describe post-closure radionuclide releases and potential radiological doses for low- and intermediate-level radioactive waste (LILW) disposal in an engineered vault facility in Korea. The conceptual model implemented in the code is focused on the release of radionuclide from a gradually degrading engineered barrier system to an underlying unsaturated zone, thence to a saturated groundwater zone. The radionuclide transport equations are solved by spatially discretizing the disposal system into a series of compartments. Mass transfer between compartments is by diffusion/dispersion and advection. In all compartments, radionuclides ate decayed either as a single-member chain or as multi-member chains. The biosphere is represented as a set of steady-state, radionuclide-specific pathway dose conversion factors that are multiplied by the appropriate release rate from the far field for each pathway. The code has the capability to treat input parameters either deterministically or probabilistically. Parameter input is achieved through a user-friendly Graphical User Interface. An application is presented, which is compared against safety assessment results from the other computer codes, to benchmark the reliability of system-level conceptual modeling of the code.

Accumulation of Radiocesium in Mushrooms

  • Lee, Young-Keun;Sathesh-Prabu, Chandran
    • 방사선산업학회지
    • /
    • 제6권1호
    • /
    • pp.1-9
    • /
    • 2012
  • In spite of colossal efforts taken for safe handling and storage of radioactive waste, the uncontrolled release of radiocesium ($^{137}Cs$ and $^{134}Cs$ isotopes) into the natural environment is inevitable. $^{137}Cs$ is of particular concern because of its long half-life, ability to transfer into biota through food chains, as well as its great mobility, bioavailability, and chemical and ecophysiological similarity with potassium. Radiocesium is released anthropogenically into the environment. Mushrooms are known for their ability to accumulate radionuclides, particularly radiocesium, which is heterogeneously distributed in the individual parts of mushrooms, and it is found that mushrooms are a hyper-accumulator of radiocesium from their environment than other vegetation. Mushrooms play a major role in the mobilization, accumulation, and translocation of cesium, i.e., decontamination of soils (mycoextraction) polluted with cesium radioisotopes, and this capacity appears to be a relevant bioindicator of cesium contamination in the environment. Moreover, the extension of mycelium into the soil makes the use of mushrooms as bioindicators of radiocesium possible. This paper reviews the potential of mushrooms in the accumulation of radiocesium from the environment, and dissertates the salient features to support the employment of mushrooms in environmental biomonitoring as a sensitive bioindicator of radiocesium contamination.