• Title/Summary/Keyword: Potential Transformer

Search Result 123, Processing Time 0.042 seconds

Qualitative Assessment for Hazard on the Electric Power Installations of a Construction Field using FMEA (FMEA를 이용한 건설현장 전력설비의 위험성에 대한 정성적 평가)

  • Kim Doo-hyun;Lee Jong-ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.36-41
    • /
    • 2004
  • This paper presents an qualitative assessment for hazard on the electric power installations of a construction field using FMEL The power installations have the mission to maintain the highest level of service reliability on the works. The more capital the electric power invest the higher service reliability they plausibly will achieve. However, because of limited resources, how effectively budgets can be allocated to achieve service reliability as high as possible. The assessment typically generates recommendations for increasing component reliability, thus improving the power installation safety. The FMEA tabulates the failure modes of components and how their failure affects the power installations being considered. Tn order to estimate the risks of a failures, the FMEA presents criticality estimation or risk priority number using the severity, occurrence, and detectability. The results showed that the highest components of the risk priority number among components were condenser, transformer, MCCB and LA. And In case of the criticality estimation, the potential failure modes were abnormal temperature rise, insulation oil leakage, deterioration for the transformer, overcurrent for the MCCB and operation outage fir the LA.

Examination with Transmission Line Distance Relay Setting Rule Considering Error (오차를 고려한 송전선 보호 거리계전 정정룰에 대한 고찰)

  • Cho, Seong-Jin;Choi, Myeong-Song;Hyun, Seung-Ho;Kim, Joung-Wook;Lee, Joo-Wang;Cho, Bum-Sub;Yoo, Young-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.12-15
    • /
    • 2002
  • Korea Power System Protection Setting Rule was used from the rectify 1990's. Thereafter transmission voltage is raised the voltage into 765kV, and introduction to new technology of Power System, and was many of variation but, it is using. The present is using Digital type distance relay for 765kV transmission line protection. If impedance value of transmission line were to value lower than setting, this would be operating and relay setting rule is for 85% into Zone 1 self section, and Zone 2 is a 125%, Zone 3 is a 225%. Which's $15{\sim}25%$ include current transformer error 5%, potential transformer 5%, relay calculation error 5% and margin factor from the field experience. This paper is discussed transmission protective relay and relay setting rule of high voltage power system and we verify the correctness relay setting rule with distance relay using Matlab simulation.

  • PDF

Study on the magnetic flux distribution of transformer by the use of finite element method (유한요소법에 의한 변압기의 자속분포 해석에 관한 연구)

  • 임달호;현동석;이철직
    • 전기의세계
    • /
    • v.29 no.4
    • /
    • pp.247-255
    • /
    • 1980
  • In this study, an application of Finite Element Method which, in principle, based on variational calculus has been presented for the two-dimensional analysis of magnetic flux distribution in the shell type core of single phase transformer. The necessary stationarity condition of energy functional and boundary conditions were determined under the assumptions that the electromagnetic field considered is stationary and that the effect of eddy current is negligible. In the process of application the domain of magnetic field was divided into triangle subsectional elements and then the matrix equations were constructed for the respective triangular element and for those of all after the manipulation of minimization process to the vector potential of magnetic field at the each vertex of the element. Furthermore the numerical computation for the equations was guided by the Gaussian Elimination Methods. As the results obtained, it is found that the aspect of magnetic flux distribution inside the core as well as the leakage flux profile at the vicinity of the inner leg of the core is not much different from the well-known distribution profile of magnetic flux, however, the procedure shows to possess the merit of the uniquely deterministic nature for the flux distribution at the desired points.

  • PDF

Development of ADWHM(Advanced Digital Watt-Hour Meter) for Remote Management of Distribution Systems (배전원격관리를 위한 차세대 디지털 적산전력계 개발)

  • 고윤석;윤상문;서성진;강태규
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.6
    • /
    • pp.316-323
    • /
    • 2004
  • This paper develops an ADWHM(Advanced Digital Watt-Hour Meter) which integrates and implements the voltage management data record function and the load management data record function in the electronic watt-hour meter. ADWHM is developed based on PIC16F874 which is 8bit micro-controller of RISK type for the easy of programing and maintenance, and electronic power signal processing module is located at front of it to reduce the computing load of processor. Also, a 16kbyte EEPROM is used to record the voltage management data and load management data for a week as well as watt-hour data and USART communication mode is used to transfer data from ADWHM to PC. The accuracy of the voltage and unt measuring for ADWHM is verified by identifying the LCD display values of the ADWHM after the voltage signals of id levels from digital function generator is applied to PT(Potential Transformer) and CT(Current Transformer) output under state which it is separated from real power line. On the its basic functions such as watt-hour data recording function, voltage management data recording function and load management data recording function was verified by showing data for three days among the collected data to PC by RS232C communication from ADWHM which was connected to real power lines for a week.

Design of Sensor System for power measuring of Distributed Energy Resource (해양도시내 분산전원 전력 계측용 센서 시스템)

  • Son, Ji-Hoon;Jang, Nak-Won;Park, Jeong-Do;Lee, Sung-Hwan;Doe, Geun-Young;Yee, Jurng-Jae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.289-290
    • /
    • 2009
  • In this paper we designed the sensor system that is based on the PT, CT and microprocessors for measuring power of distributed energy resource of ocean side.

  • PDF

A Study on the Electrical Propertis of Optical Potential Transformer for GIS (GIS용 광PT의 전기적 특성에 관한 연구)

  • Lee, Su-Woong;Lee, Sung-Gap;Park, Sang-Man;Wu, Hyeong-Gwan;Won, Woo-Sik;Ahn, Byeong-Rip
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1273-1274
    • /
    • 2007
  • In this paper, a Optical Voltage Transformer has been designed and fabricated to improve temperature stability caused by materials properties and insulation in measuring system, using single crystal $Bi_{12}SiO_{20}$ as Pockels effect cells for Gas Insulated Switchgear[GIS] System. LD[wavelength: 850nm] was used as optical source, InGaAs as optical detector to measure optical power, Polarizing Beam Splitter as Polarizer and Analyzer, and Multi-mode Optical-fiber[62.5/$125{\mu}m$] as Light transmission line. OPT was assembled in order to pockels effect, and adopted direct electric field type. The linearity of OPT maintains variation for applied voltage range from 100V - 3000V during the test of electric property, As the temperature was changed from $25^{\circ}C$ to $60^{\circ}C$. the result of this study shows that characteristics of OPT are good, and it can be reflected for practical optical sensors in GIS system.

  • PDF

Characteristics Analysis of ECT/EVT within Epoxy Spacer (스페이서 내장형 ECT/EVT의 특성분석)

  • Park, Seong-Hee;Jeong, Hae-Eun;Lim, Kee-Joe;Kang, Seong-Hwa;Jeong, Jong-Hun;Kim, Pyung-Jung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.509-510
    • /
    • 2006
  • 전류 및 전압을 측정하는 것은 오래전부터 CT(current transformer)/PT(potential transformer) 가 많이 사용되어져 왔지만, 이들은 iron core를 사용하기 때문에 포화특성이 발생하게 되어, 오차를 유발하게 된다. 이에 대한 대처 방안으로서 현재는 로고스키코일 및 분압방식을 이용한 ECT/EVT에 대한 적용이 진행이 되고 있다. ECT/EVT는 포화특성이 없고, 선형성이 매우우수하며, 소형, 경량이라는 점에서 현재 배전반의 변화 추세를 구현할 수 있는 충분한 능력을 지니고 있다. 이에 본 논문에서는 ECT/EVT를 제작하여, 특성을 분석하고자 한다. 특이점은 ECT/EVT가 EPOXY SPACER에 내장이 되어 사용이 되며, 이런 사용조건하에서의 이들의 특성이 변화 될 수 있는지를 살펴보았다. 그 결과 EPXOY 몰딩하에서도 그 선형성을 잃지 않았으며, 원하는 오차인 ${\pm}1%$에 부합되는 결과를 나타내었다.

  • PDF

A Three Phase Three-level PWM Switched Voltage Source Inverter with Zero Neutral Point Potential

  • Oh Won-Sik;Han Sang-Kyoo;Choi Seong-Wook;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.224-232
    • /
    • 2005
  • A new three phase three-level Pulse Width Modulation (PWM) Switched Voltage Source (SVS) inverter with zero neutral point potential is proposed. It consists of three single-phase inverter modules. Each module is composed of a switched voltage source and inverter switches. The major advantage is that the peak value of the phase output voltage is twice as high as that of a conventional neutral-point-clamped (NPC) PWM inverter. Thus, the proposed inverter is suitable for applications with low voltage sources such as batteries, fuel cells, or solar cells. Furthermore, three-level waveforms of the proposed inverter can be achieved without the switch voltage imbalance problem. Since the average neutral point potential of the proposed inverter is zero, a common ground between the input stage and the output stage is possible. Therefore, it can be applied to a transformer-less Power Conditioning System (PCS). The proposed inverter is verified by a PSpice simulation and experimental results based on a laboratory prototype.

Reliability-Centered Maintenance Model for Maintenance of Electric Power Distribution System Equipment (배전계통 기기 유지보수를 위한 RCM 모델)

  • Moon, Jong-Fil;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.410-415
    • /
    • 2009
  • With the implementation of electric power industry reform, the utilities are looking for effective ways to improve the economic efficiency. One area in particular, the equipment maintenance, is being scrutinized for reducing costs while keeping a reasonable level of the reliability in the overall system. Here the conventional RCM requires the tradeoff between the upfront maintenance costs and the potential costs of losing loads. In this paper we describe the issues related to applying so-called the "Reliability-centered Maintenance" (RCM) method in managing electric power distribution equipment. The RCM method is especially useful as it explicitly incorporates the cost-tradeoff of interest, i.e. the upfront maintenance costs and the potential interruption costs, in determining which equipment to be maintained and how often. In comparison, the "Time-based Maintenance" (TBM) method, the traditional method widely used, only takes the lifetime of equipment into consideration. In this paper, the modified Markov model for maintenance is developed. First, the existing Markov model for maintenance is explained and analyzed about transformer and circuit breaker, so on. Second, developed model is introduced and described. This model has two different points compared with existing model: TVFR and nonlinear customer interruption cost (CIC). That is, normal stage at the middle of bathtub curve has not CFR but the gradual increasing failure rate and the unit cost of CIC is increasing as the interruption time is increasing. The results of case studies represent the optimal maintenance interval to maintain the equipment with minimum costs. A numerical example is presented for illustration purposes.

The expectation effects of a decrease in neutral wires Zero Sequence harmonic currents in 3 phases - 4 wires systems (3상4선식 계통에서 중성선 영상고조파 저감에 따른 기대효과)

  • Kang, Chang-Won;Lee, Sung-Woo;Jung, Yeun-Hea;Kim, Se-Dong;Lee, Won-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.715-719
    • /
    • 2002
  • Recently, Dangers due to harmonics emanated from all sorts of machinery have been on the increase with the development in industry. One of them is that Zero Sequence harmonic currents flow from the neutral wires in 3 phases - 4 wire systems. The flowing of harmonic currents in neutral wires brings about the superheating and falloff in output of transformer, the overheating of them, a rise in ground potential and the wrong movement of machinery, so has a bad influence on this system. To develop the machinery to decrease neutral wires Zero sequence harmonic currents and apply it help solve these problems and bring about the effects of a improvement in power factor and energy savings.

  • PDF