• Title/Summary/Keyword: Potent

Search Result 4,824, Processing Time 0.031 seconds

Synthesis and Analgesic and Anti-inflammatory Activities of 1,2-Benzothiazine Derivatives

  • Lee, Eun-Bang;Kwon, Soon-Kyoung;Kim, Sang-Geon
    • Archives of Pharmacal Research
    • /
    • v.22 no.1
    • /
    • pp.44-47
    • /
    • 1999
  • Three 1,2-benzothiazine derivatives were synthesized, and their analgesic / anti-inflammatory efficacy and their effect s of gastric irritation were evaluated. Among the three compounds, 39 exhibited the most potent anlagesic action, but the effect was weaker than that of piroxicam. Nonetheless, the compound showed 4 times more potent analgesic action with less gastric damage than did ibuprofen. These compounds did not show anti-inflammatory effect at an oral dose of 5 mg/kg.

  • PDF

Studies on the Synthesis and Central Nervous Depressant Activities of Piperine Derivatives(IV) -Piperine Derivatives with Substituents in Piperidine Residue- (피페린유도체의 합성 및 중추 억제작용에 관한 연구(IV) -피페리딘에 치환기를 도입한 피페린유도체-)

  • 심영기;임중기;이은방;우원식
    • YAKHAK HOEJI
    • /
    • v.29 no.5
    • /
    • pp.253-259
    • /
    • 1985
  • In order to search a more active and safer compound, piperine derivatives with substituents in piperidine residue were synthesized and evaluated on CNS depressant activity. N-Piperoyl-2-methylpiperidine (I) and N-piperoyl-3-methylpiperidine (II) were potent in strychnine-induced convulsion. Compound I and N-piperoyl-3-hydroxypiperidine (IX) exhibited a potent inhibitory effect againt pentetrazoleinduced convulsion and a significant prolongation effect of hexobarbital-induced sleeping time. The hydroxy derivatives were more toxic than the methyl derivatives.

  • PDF

Isolation of a Potent Mosquito Repellent from Vitex negundo L.: An Alternative Source of Rotundial

  • Amancharla, Praveen K.;Muthuraj, Patrick S.;Rao, Gottumukkala V.;Singh, Om V.
    • Natural Product Sciences
    • /
    • v.5 no.2
    • /
    • pp.104-106
    • /
    • 1999
  • The chloroform fraction of the aqueous extract of the fresh leaves of Vitex negundo by bioactivity guided isolation yielded a pure compound, rotundial (1) which has shown potent mosquito repellent activity. Using spectral data (UV, IR, $^1H\;&\;^{13}C$ NMR and MS) its structure has been elucidated.

  • PDF

1-Methyl Substituent and Stereochemical Effects of 2-Phenylcyclopropylamines on the Inhibition of Rat Brain Mitochondrial Monoamine Oxidase A and B

  • Kang, Gun-Il;Hong, Suk-Kil;Choi, Hee-Kyung
    • Archives of Pharmacal Research
    • /
    • v.10 no.1
    • /
    • pp.50-59
    • /
    • 1987
  • (E)-2-Phenylcyclopropylamine ((E)-TCP), (Z)-2-Phenylacyclopropylamine ((Z)-TCP), (E)-1-methyl-2-phenylcyclopropylamine ((E)-MTCP), and (Z)-1-methyl-2-phenylcyclopropylamine ((Z)-MTCP) were synthesized and used to determine to what extent 1-methylsubstitution and stereochemistry of 2-phenycyclopropylamines affect inhibition of monoamine oxidase (MAO). Inhibition of rat brain mitochondrial MAO-A and B by the compounds were measured using serotonin and benzylamine as the substrate, respectively and $IC_{50}$ values obtianed with 95% confidence limits by the method of computation. For the inhibition of MAO-A, (E)-MTPC ($IC_{50}$ = 6.2 * $10^{-8}$M) was found to be 37 times more potent than (Z)-MTCP ($IC_{50}$ = 7.8 * $10^{-8}$M), was 7 times more potent than (Z)-MTCP($IC_{50}$= 4.7 * $10^{-7}$M) and (E)-TCP($IC_{50}$ =7.8 * $10^{-8}$M),0.6 times as potent as (Z)- TCP ($IC_{50}$ = 4.4 * $10^{-8}$M). The results suggested that while without 1-methyl group, potency of a (Z)-isomer was comparable to that of (E)-isomer, the methyl group in its (Z)-position was very unfavorable to the inhibition of MAO and that in its (E)-position, the methyl group contributed positively to the potency as found by the fact that (E)-MTCP was 1-5 times more potent than (E)-TCP. In view of the selective inhibition of MAO-A- or B over MAO-A and 1-methyl substitution as well as the stereochemical factors did not significantly influence the selectivity.

  • PDF

Potent Inhibition of Monoamine Oxidase B by a Piloquinone from Marine-Derived Streptomyces sp. CNQ-027

  • Lee, Hyun Woo;Choi, Hansol;Nam, Sang-Jip;Fenical, William;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.785-790
    • /
    • 2017
  • Two piloquinone derivatives isolated from Streptomyces sp. CNQ-027 were tested for the inhibitory activities of two isoforms of monoamine oxidase (MAO), which catalyzes monoamine neurotransmitters. The piloquinone 4,7-dihydroxy-3-methyl-2-(4-methyl-1-oxopentyl)-6H-dibenzo[b,d]pyran-6-one (1) was found to be a highly potent inhibitor of human MAO-B, with an $IC_{50}$ value of $1.21{\mu}M$; in addition, it was found to be highly effective against MAO-A, with an $IC_{50}$ value of $6.47{\mu}M$. Compound 1 was selective, but not extremely so, for MAO-B compared with MAO-A, with a selectivity index value of 5.35. Compound 1,8-dihydroxy-2-methyl-3-(4-methyl-1-oxopentyl)-9,10-phenanthrenedione (2) was moderately effective for the inhibition of MAO-B ($IC_{50}=14.50{\mu}M$) but not for MAO-A ($IC_{50}$ > $80{\mu}M$). There was no time-dependency in inhibition of MAO-A or -B by compound 1, and the MAO-A and -B activities were almost completely recovered in the dilution experiments with an excess amount of compound 1. Compound 1 showed competitive inhibition for MAO-A and -B, with $K_i$ values of 0.573 and $0.248{\mu}M$, respectively. These results suggest that piloquinones from a microbial source could be potent reversible MAO inhibitors and may be useful lead compounds for developing MAO enzyme inhibitors to treat related disorders, such as depression, Parkinson's disease, and Alzheimer's disease.

Isolation and characterization of an antifungal substance from Burkholderia cepacia, an endophytic bacteria obtained from roots of cucumber.

  • Park, J.H.;Park, G.J.;Lee, S.W;Jang, K.S.;Park, Y.H.;Chung, Y.R.;Cho, K.Y.;Kim, J.C.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.95.2-96
    • /
    • 2003
  • In order to develop a new microbial fungicide for the control of vegetable diseases using endophytic bacteria, a total of 260 bacterial strains were isolated from fresh tissues of 5 plant species. After they were cultured in broth media, their antifungal activities were screened by in vivo bioassays against Botrytis cinerea(tomato gray mold), Pythium ultimum(cucumber damping-off), Phytopkhora infestans(tomato late blight), Colletotrichum orbiculare(cucumber anthracnose), and Blumeria graminis f. sp. hordei(barley powdery mildew). As the results of screening, 38 bacterial strains showed potent antifungal activities against at least one of 5 plant pathogens. A bacterial strain EB072 displayed potent disease control activities against 3 plant diseases. Among the bacterial strains with a potent antifungal activity against cucunlber anthracnose, three bacterial strains, EB054, EB151 and EB215, also displayed a potent in vitro antifungal activity against C. acutatum, a fungal agent causing pepper anthracnose. A bacterial strain EB215 obtained from roots of cucumber was identified as Burkholderia cepacia based on its physiological and biochemical characteristics and 165 rRNA gene sequence. An antifungal substance was isolated from the liquid cultures of B. cepacia EB215 strain by ethyl acetate partitioning, repeated silica gel column chromatography, and invitro bioassay, Its structural determination is in progress by various instrumental analyses.

  • PDF

Excitatory effect of KR-25018 and capsaicin on the isolated guinea pig bronchi

  • 정이숙;신화섭;박노상;문창현;조태순
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.252-252
    • /
    • 1996
  • We Investigated the peripheral excitatory effect of capsaicin and KR-25018, a newly synthesized capsaicin derivative which was demonstrated to have a potent analgesic activity. KR-25018 and capsaicin were found to be both potent efficacious contractors of isolated guinea pig bronchial smooth muscle. KR-25018 was equipotent with capsaicin and [Sar$\^$9/,Met(O$_2$)$\^$11/]-substance P, 10-fold more potent than histamine and 10-fold less potent than (${\beta}$ -Ala$\^$8/)-neurokinin A(4-10), and their -log(M)EC$\_$50/ values were 6.94${\pm}$0.08, 6.86${\pm}$0.05, 6.96${\pm}$0.07, 5.64${\pm}$0.04, 7.96${\pm}$0.02, respectively. Contractile responses to KR-25018 and capsaicin were potentiated by phosphoramidon (1 ${\mu}$M), an inhibitor of neuropeptide-inactivating endopeptidase, but completely abolished in a calcium-free medium. These responses to KR-25018 and capsaicin were unaffected by the NK-1 antagonist CP96345 (1${\mu}$M), partially inhibited by the NK-2 antagonist SR48968 (1 ${\mu}$M) but almost completely abolished by a combination of the antagonists. A vanilloid receptor antagonist capsazepine competitively antagonized the responses to both KR-25018 and capsaicin (pA$_2$: aganst KR-25018, 5.98${\pm}$0.47; against capsaicin, 5.80${\pm}$0.31), and a capsaicin-sensitive cation channel antagonist ruthenium red caused significant reduction in the maximum responses to KR-25018 and capsaicin (pD'$_2$: against KR-25018, 4.61${\pm}$0.33; against capsaicin 4.96${\pm}$0.21). In conclusion, the present results suggest that KR-25018 and cpasaicin act on the same vanilloid receptor inducing the influx of calcium through ruthenium red-sensitive cation channel and produce contractile responses via the release of tachykinins that act on both NK-1 and NK-2 receptor subtypes.

  • PDF

Discovery of Cyclin-dependent Kinase Inhibitor, CR229, Using Structure-based Drug Screening

  • Kim, Min-Kyoung;Min, Jae-Ki;Choi, Bu-Young;Lim, Hae-Young;Cho, Youl-Hee;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1712-1716
    • /
    • 2007
  • To generate new scaffold candidates as highly selective and potent cyelin-dependent kinase (CDK) inhibitors, structure-based drug screening was performed utilizing 3D pharmacophore conformations of known potent inhibitors. As a result, CR229 (6-bromo-2,3,4,9-tetrahydro-carbolin-1-one) was generated as the hit-compound. A computational docking study using the X-ray crystallographic structure of CDK2 in complex with CR229 was evaluated. This predicted binding mode study of CR229 with CDK2 demonstrated that CR229 interacted effectively with the Leu83 and Glu81 residues in the ATP-binding pocket of CDK2 for the possible hydrogen bond formation. Furthermore, biochemical studies on inhibitory effects of CR229 on various kinases in the human cervical cancer HeLa cells demonstrated that CR229 was a potent inhibitor of CDK2 ($IC_{50}:\;3\;{\mu}M$), CDKI ($IC_{50}:\;4.9\;{\mu}M$), and CDK4 ($IC_{50}:\;3\;{\mu}M$), yet had much less inhibitory effect ($IC_{50}:>20\;{\mu}M$) on other kinases, such as casein kinase 2-${\alpha}1$ (CK2-${\alpha}1$), protein kinase A (PKA), and protein kinase C (PKC). Accordingly, these data demonstrate that CR229 is a potent CDK inhibitor with anticancer efficacy.

Flavonoid Inhibitors of β-Ketoacyl Acyl Carrier Protein Synthase III against Methicillin-Resistant Staphylococcus aureus

  • Lee, Jee-Young;Lee, Ju-Ho;Jeong, Ki-Woong;Lee, Eun-Jung;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2695-2699
    • /
    • 2011
  • ${\beta}$ Ketoacyl acyl carrier protein synthase III (KAS III) initiates fatty acid synthesis in bacteria and is a key target enzyme to overcome the antibiotic resistance problem. In our previous study, we found flavonoid inhibitors of Enterococcus faecalis KAS III and proposed three potent antimicrobial flavonoids against Enterococcus faecalis and Vancomycin-resistant Enterococcus faecalis with MIC values in the range of 128-512 ${\mu}g/mL$ as well as high binding affinities on the order from $10^6$ to $10^7\;M^{-1}$. Using these series of flavonoids, we conducted biological assays as well as docking study to find potent flavonoids inhibitors of Staphylococcus aureus KAS III with specificities against Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Here, we propose that naringenin (5,7,4'-trihydroxyflavanone) and eriodictyol (5,7,3',4'-tetrahydroxyflavanone) are potent antimicrobial inhibitors of Staphylococcus aureus KAS III with binding affinity of $3.35{\times}10^5$ and $2.01{\times}10^5\;M^{-1}$, respectively. Since Arg38 in efKAS III is replaced with Met36 in saKAS III, this key difference caused one hydrogen bond missing in saKAS III compared with efKAS III, resulting in slight discrepancy in their binding interactions as well as decrease in binding affinities. 4'-OH and 7-OH of these flavonoids participated in hydrogen bonding interactions with backbone carbonyl of Phe298 and Ser152, respectively. In particular, these flavonoids display potent antimicrobial activities against various MRSA strains in the range of 64 to 128 ${\mu}M$ with good binding affinities.

Xanthoangelol and 4-Hydroxyderricin Are the Major Active Principles of the Inhibitory Activities against Monoamine Oxidases on Angelica keiskei K

  • Kim, Ji Ho;Son, Yeon Kyung;Kim, Gun Hee;Hwang, Keum Hee
    • Biomolecules & Therapeutics
    • /
    • v.21 no.3
    • /
    • pp.234-240
    • /
    • 2013
  • Monoamine oxidase inhibitors (MAOI) have been widely used as antidepressants. Recently, there has been renewed interest in MAO inhibitors. The activity-guided fractionation of extracts from Angelica keiskei Koidzumi (A. keiskei K.) led to the isolation of two prenylated chalcones, xanthoangelol and 4-hydroxyderricin and a flavonoid, cynaroside. These three isolated compounds are the major active ingredients of A. keiskei K. to inhibit the MAOs and DBH activities. Xanthoangelol is a nonselective MAO inhibitor, and a potent dopamine ${\beta}$-hydroxylase (DBH) inhibitor. $IC_{50}$ values of xanthoangelol to MAO-A and MAO-B were calculated to be 43.4 ${\mu}M$, and 43.9 ${\mu}M$. These values were very similar to iproniazid, which is a nonselective MAO inhibitor used as a drug against depression. The $IC_{50}$ values of iproniazid were 37 ${\mu}M$, and 42.5 ${\mu}M$ in our parallel examination. Moreover, $IC_{50}$ value of xanthoangelol to DBH was calculated 0.52 ${\mu}M$. 4-Hydroxyderricin is a potent selective MAO-B inhibitor and also mildly inhibits DBH activity. The $IC_{50}$ value of 4-hydroxyderricin to MAO-B was calculated to be 3.43 ${\mu}M$ and this value was higher than that of deprenyl (0.046 ${\mu}M$) used as a positive control for selective MAO-B inhibitor in our test. Cynaroside is a most potent DBH inhibitor. The $IC_{50}$ value of cynaroside to DBH was calculated at 0.0410 ${\mu}M$. Results of this study suggest that the two prenylated chalcones, xanthoangelol and 4-hydroxyderricin isolated from A. keiskei K., are expected for potent candidates for development of combined antidepressant drug. A. keiskei K. will be an excellent new bio-functional food material that has the combined antidepressant effect.