• Title/Summary/Keyword: Pot cultures

Search Result 44, Processing Time 0.027 seconds

A study on the pot cultures of arbuscular mycorrhizal fungi in Korea (Arbuscular 내생균근 균의 포트배양에 관한 연구)

  • Lee, Snag-Sun;Eom, Ahn-Heum;Lee, Oun-Hack;Kim, Myoung-Kon
    • The Korean Journal of Mycology
    • /
    • v.21 no.1
    • /
    • pp.38-50
    • /
    • 1993
  • Four plant (Sorghum bicolor, Cassia mimosoides var. nomame, Sesamum indicum and Glycine soja) were cultivated at the pots including the soils containing arbuscular mycorrhizal fungi and were also investigated with the colonizations and productions of arbuscular mycorrhizal fungi. Whereas the colonizations of arbuscular mycorrhizal fungi continuosly increased on the roots until 50 days, the productions of arbuscular mycorrhizal fungal spores were fluctuated with the terms of 30 days after inoculated. This indicated that the colonizations on the roots were not correlated with productions of arbuscular mycorrhizal fungal spores. Also, the various soils collected were applied to this technique by using pot cultures. Out of 82 various soils collected, the spore productions of arbuscular mycorrhiaze were observed only from 42 soils. The spores cultured under artificial conditions were identified to 15 species with four genera. The spore productions of arbuscular mycorrhizal fungi using this technique would be considered to be related to the soil pH: The spore productions were found in the low pH for the species of Acaulospora and Glomus, the those near pH 7.6 for the species of some Glomus, Scutellospora and Gigaspora.

  • PDF

Effect of Tricho-compost against Seedling Blight Disease of Wheat Caused by Sclerotium rolfsii

  • Faruk, M. Iqbal
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.4
    • /
    • pp.395-402
    • /
    • 2018
  • The efficacy of formulated Trichoderma harzianum-based Tricho-compost, seed treatment with Tricho-inocula, and chemical fungicide Provax 200 WP against foot and root rot diseases of wheat caused by Sclerotium rolfsii was tested in the pot house and in the research field of Plant Pathology Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh. Tricho-compost was prepared with a mixed substrate of cow dung, rice bran, and poultry refuse colonized by T. harzianum. Seedling mortality of wheat was significantly reduced by the Tricho-compost, Tricho-inocula, and Provax 200 WP both in the pot house as well as in the field experiments. The yield of wheat was sharply increased over the control due to the T. harzianum formulations and Provax 200 WP. Among the treatments, soil application of Tricho-compost was more efficient in reducing seedling mortality and accelerating plant growth with an increased yield of wheat with S. rolfsii-inoculated pot cultures and field experiments.

Selection of Tolerant Plant Species using Pot Culture for Remediation of Explosive Compounds Contaminated Soil (포트 재배에 의한 화약물질 오염토양 정화용 내오염성 식물 선정)

  • Lee, Ahreum;Bae, Bumhan
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.73-84
    • /
    • 2015
  • Nine plant species were selected through vegetation survey at three military shooting ranges at northern Gyeonggi Province. Plants were germinated in normal soil and three seedlings were transplanted to a bottom sealed pot containing sandy loam soils contaminated with either RDX (291 mg/kg) or TNT (207 mg/kg). Planted, blank (without plant), and control (without explosive compound) pots were grown in triplicate at a green house for 134 days. During cultivation, transplanted plants exhibited chlorosis and necrosis in flower and leaf by explosive toxicity and stress. Only three plants, Wild soybean, Amur silver grass, Reed canary grass, survived in TNT treated pot, while seven plant species except for field penny cress and jimson weed, thrived in RDX treated pot. Appreciable amount of TNT (61.6~241.2 mg/g-D.W.) was detected only in plant roots. Up to 763.3 mg/g-D.W. along with 4-amino-2,6-dinitrotoluene, an intermediate of TNT, accumulated in the root of wild soybean. In addition, azoxy compounds, abiotic intermediates of TNT, were detected in TNT treated soils. RDX absorbed average 1,839.95 mg/kg in shoot and 204.83 mg/kg in root. Most of TNT in plant was accumulated in underground part whereas RDX was localized in aerial part. Material balance calculation showed that more than 95% of the initial TNT was removed in the planted pots whereas only 60% was removed in the blank pot. The amount of RDX removed from soil was in the order of Amur Silver Grass (51%) > Chickweed (43%) > Evening primrose (38%). Based on the results of pot cultures, Amur silver grass and Reed canary grass are selected as tolerant remedial plants for explosive toxicity.

Effects of Boron Application on the Forage Traits in the Pure and Mixed Swards of Orchardgrass and White Clover. II. Changes in the yields and concurrence index of forages (Orchardgrass 및 White clover의 단 파 및 혼파 재배에서 붕소의 시용이 목초의 여러 특성에 미치는 영향. II. 초종별 건물수량 및 식생 경합지수의 변화)

  • Jung, Yeun-Kyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.23 no.3
    • /
    • pp.159-168
    • /
    • 2003
  • This pot experiment was conducted in order to find out the effects of boron application($B_{0}$ /; control, $B_1$; 0.2, $B_2$; 2.0,$ B_3$; 6.0, $B_4$; 15.0 B me/pot) on the forage performance of pure and mixed cultures of orchardgrass and white clover. The 2nd part was concerned with the changes in the forage yields and concurrence index. The results obtained are summarized as follows: 1. The optimum boron application($B_2$) generally resulted in the increase of both forage yields, but the effects of boron application on them were different according to the forage species, whether it was a pure or mixed cultures, additional fertilization, and cutting order. The effects of boron application on the forage productivity were more obvious in white clover than in orchardgrass. 2. Owing to the decline of white clover as affected by the application of additional fertilizers, especially N, in the grass-clover mixed cultures, the effects of boron application on the white clover yields showed a numerical inferiority compared with the pure culture. It was recognized that the yield increase and botanical composition of white clover in grass-clover mixed cultures could be regulated by the application of additional fertilizers and boron. 3. The toxic boron application($B_3$ and $B_4$) resulted in a decreased yield of both forages. The yield change of orchardgrass tended to be similar between pure and mixed cultures, whereas it of white clover tended to be more negative in mixed than in pure cultures. 4. With the application of additional fertilizers, especially N, the botanical composition and concurrence index in grass-clover mixed cultures were relatively increased in orchardgrass, and decreased in white clover. The botanical composition of orchardgrass increased from 55% to 75%, whereas it of white clover decreased from 45% in the first half cutting to 25% in the second half cutting, respectively.

Competition for Water in Two Populations of Impatiens pallida (Balsaminaceae) from Contrasting Water Environments (수분환경이 다른 서식지에서 자란 Impatiens pallida 의 두 개체군간 수분에 대한 경쟁)

  • Yang, Hyo-Sik;James B. McGraw
    • The Korean Journal of Ecology
    • /
    • v.19 no.2
    • /
    • pp.165-178
    • /
    • 1996
  • We investigated the role of competition in adaptation to varying water availability levels for two ecotypically-differentiated populations of Impatiens pallida found naturally in low- vs. high-water environments. In a greenhouse experiment, seedlings were grown in pure cultures at two densities (n=1 and 2 plants per pot) and in mixed cultures (n=2) under low-, medium- and high-water treatments. The two populations were shown to be genetically distinct across the range of environmental conditions in the greenhouse experiment, confirming previous findings. The two populations had similar morphological responses to density and water availability in pure cultures and mixtures, but the population from the high-water environment showed a greater growth response to high water availability than did the population from the low-water environment and the difference in growth between the two populations decreased from the high-water to low-water treatment. Relative competitive ability of two populations were compared under three different water treatments and two densities. Differential response to watering treatment and density were not reflected in a difference in relative competitive ability. Relative yield totals were significantly greater than 1 overall. The niche differentiation suggested by RYTs>1 may be responsible for the lack of differential competitive effects observed for populations in the three vatering treatments.

  • PDF

Optimal culture conditions for mass production of rock polypody (Polypodium vulgare L.)

  • Jang, Bo Kook;Park, Kyungtae;Han, Ahreum;Lee, Cheol Hee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.44-44
    • /
    • 2019
  • This study aimed to develop a suitable method for inducing the proliferation of prothallus and producing sporophytes of rock polypody (Polypodium vulgare L.). The prothalli used in all experiments were obtained from spore germination and sub-cultured for 8-week intervals. The most appropriate media for prothallus propagation were investigated by culturing 300 mg of prothallus in MS ($1/4{\times}$, $1/2{\times}$, $1{\times}$, and $2{\times}$ strength) medium and in Knop medium for 8 weeks. Cultures were maintained at a temperature of $25{\pm}1^{\circ}C$, light intensity of $30{\pm}1.0{\mu}mol-m-2{\cdot}s-1$, and a photoperiod of 16/8 h (light/dark). Fresh weight of prothalli was 4.8 g on $1{\times}$ MS, 4.5 g on $1/2{\times}$ MS and 4.3 g on 1/4 MS medium. To select a suitable soil combination for sporophyte formation, 1.0 g of prothallus was ground with distilled water, spread in five combinations onto different soil substrates (decomposed granite, horticultural substrates, peat moss, and perlite), and then cultivated for 13 weeks. The sporophyte cultures were maintained at a temperature of $25{\pm}1^{\circ}C$, light intensity of $43{\pm}2.0{\mu}mol-m-2{\cdot}s-1$, humidity of $84{\pm}1.4%$, and a photoperiod of 16/8 h (light/dark). The results showed that a mixture containing a 2:1 (v:v) ratio of horticultural substrate and perlite, increased sporophyte formation to 462.5 sporophytes per pot (7.5 cm2). The other soil substrates produced from 314.5 to 405.3 sporophytes per pot. Therefore, our results will provide conditions suitable for mass production of Polypodium vulgare L.

  • PDF

Effects of Boron Application on the Forage Traits in the Pure and Mixed Cultures of Orchardgrass and White Clover. III. Changes in the contents and yields of N-compounds(crude/pure protein and soluble N-compounds) in forages (Orchardgrass 및 White Clover의 단파 및 혼파재배에서 붕소의 시용이 목초의 여러 특성에 미치는 영향. III. 목초 중 질소화합물(조/순단백질 및 수용성 질소화합물)의 함량 및 수량 변화)

  • 정연규
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.23 no.3
    • /
    • pp.169-178
    • /
    • 2003
  • This pot experiment was conducted to find out the effects of boron application($B_{0}$ ; control, $B_1$; 0.2, $B_2$; 2.0, B$_3$; 6.0, $B_4$; 15.0 boron me/pot) on the forage performance of pure and mixed cultures of orchardgrass and white clover. The third part was concerned with the changes in the contents and yields of nitrogen compounds(crude/pure protein and soluble N-compound) in forages. The results obtained are summarized as follows: 1. With no additional fertilization, especially nitrogen, in a pure culture, the $B_{0}$ and $B_4$ treatments on white clover decreased the amount of crude/pure protein, and showed nitrogen deficiency symptoms. However, the optimum boron application($B_2$) positively resulted in the increase of crude and pure protein, especially pure protein, and the content ratio of pure protein/soluble N-compounds. With additional fertilization, especially nitrogen, differences were not found among the boron treatments($B_{0}$, $B_2$, and $B_4$). 2. Owing to the decline of white clover as affected by the additional fertilization, especially nitrogen, in the grass-clover mixed cultures, the effects of B-application on these contents of white clover were different and relatively low, compared with the pure cultures. But the positive effect of $B_2$ treatment tended to be similar to the pure cultures. Also, it was recognized that the $B_2$ treatment resulted in the increase of their contents in orchardgrass, however, the effect was relatively minor compared with that of white clover. 3. The optimum B application(B$_2$) on white clover influenced relatively better on the yields of crude and pure protein than on the dry matter yields, especially with no additional fertilization. The effects of boron application on the contents and yields of crude and pure protein were different according to the forage species, whether it was a pure or mixed culture, and additional fertilization.

Use of Dactylaria brochopaga, a Predacious Fungus, for Managing Root-Knot Disease of Wheat (Triticum aestivum) Caused by Meloidogyne graminicola

  • Kumar, Niranjan;Singh, K.P.
    • Mycobiology
    • /
    • v.39 no.2
    • /
    • pp.113-117
    • /
    • 2011
  • A laboratory experiment was conducted to study the induction of constricting rings and test predation of Dactylaria brochopaga isolates against second stage juveniles (J2s) of Meloidogyne graminicola. Among the five fungal isolates, isolate D showed the greatest number of predatory rings and, consequently, trapped the maximum number of M. graminicola J2s in dual cultures. Another pot experiment was conducted to study the effect of D. brochopaga (isolate D) on the management of wheat root-knot disease. Applying a mass culture (10 g/pot) and a spore suspension of the fungus with and without cow dung manure to soil infested with 2,000 M. graminicola juveniles significantly improved plant height, root length, weights of shoots, roots, panicles and grains per hill compared to those in the control. Moreover, the fungus significantly reduced the number of root-knots, the number of egg masses, juveniles, and females per hill compared to those in the control. Bio-efficacy of the fungus was heightened when the mass culture and a spore suspensions were used in combination with cow dung manure to improve the plant growth parameters and reduce the number of root-knot and reproductive factors. Further investigations should be conducted to identify the impact of this fungus in the field.

Development of the Microbial Consortium for the Environmental Friendly Agriculture by the Antagonistic Rhizobacteria (다기능 PGPR 균주들의 기작별 상호보완형 컨소시엄 구성을 통한 고추역병 방제 및 고추생장촉진)

  • Lim, Jong-Hui;Jung, Hee-Young;Kim, Sang-Dal
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.3
    • /
    • pp.116-120
    • /
    • 2009
  • We found out the new method of the consortium for the environmental friendly agriculture by 8 kinds of the selected antagonistic rhizobacteria. This research involved composition of mutual complementary consortium by each antagonistic function such as production of antibiotic, siderophore, antifungal cellulase and insoluble phosphate solubilization. The consortium No.11 among composed consortium candidates showed the most pepper growth promoting activity and Phytophthora blight suppression on the in vivo pot test of red-pepper plant. The consortium No. 11 is combination of PGPR Bacillus subtilis AH18 and Bacillus licheniformis K11. B. subtilis AH18 and B. licheniformis K11 both could produce the auxin, antifungal ${\beta}$-glucannase and siderophore. Also, they had mechanism for solubilization of insoluble phosphate. But, B. licheniformis K11 could produce the antibiotic of iturin which was able to inhibit Phytophthora capsici. We confirmed complementary noncompetitive mutualism between B. subtilis AH18 and B. licheniformis K11 of the consortium No.11. The results came out through treatment of two strains co-culture, treatment of individual culture and co-treatment of two individual cultures for the growth and Phytophthora blight suppression of red-pepper. The treatment of two strains co-culture didn't show a synergic effect in comparing sole treatment on the pepper growth promotion and Phytophthora blight suppression. But, when the pots were treated simultaneously with co-treatment of two individual cultures, an synergic effect was seen in the growth promotion of roots, stem, leaves and suppressed Phytophthora blight on red-pepper in vivo pot test.

Population Changes of Arbuscular Mycorrhizal Spores in the Different Soil Environments (환경변화에 따른 내생균근 포자증식의 변화)

  • Lee, Seok-Koo;Eum, An-Heum;Lee, Sang-Sun
    • The Korean Journal of Mycology
    • /
    • v.20 no.2
    • /
    • pp.134-143
    • /
    • 1992
  • The association of soil environments and sporulation of arbuscular mycorrhizae was investigated using pot cultures. Increased arbuscular mycorrhizal spores as well as the better growth of the host plants were observed when sorghum (Sorghum bicolor) was treated with different soil conditions using several fertilizers with different concentrations. For to five fold increase of sporulation of arbuscular mycorrhizae was noticed depending on the mycorrhizal species. Although there were some differences between the four arbuscular mycorrhizae species and the conditions of soil environments, maximum populations of spores were reached at about 30-40 days after cultivation. The populations of four arbuscular mycorrhizal species was individually fluctuated. Also, the growth rate of host plants were different from the fertilizers over 2-3 times, but the increase of spores were not influenced by it.

  • PDF