• Title/Summary/Keyword: Posttranslational modifications

Search Result 16, Processing Time 0.021 seconds

Histone Modifications During DNA Replication

  • Falbo, Karina B.;Shen, Xuetong
    • Molecules and Cells
    • /
    • v.28 no.3
    • /
    • pp.149-154
    • /
    • 2009
  • Faithful and accurate replication of the DNA molecule is essential for eukaryote organisms. Nonetheless, in the last few years it has become evident that inheritance of the chromatin states associated with different regions of the genome is as important as the faithful inheritance of the DNA sequence itself. Such chromatin states are determined by a multitude of factors that act to modify not only the DNA molecule, but also the histone proteins associated with it. For instance, histones can be posttranslationally modified, and it is well established that these posttranslational marks are involved in several essential nuclear processes such as transcription and DNA repair. However, recent evidence indicates that posttranslational modifications of histones might be relevant during DNA replication. Hence, the aim of this review is to describe the most recent publications related to the role of histone posttranslational modifications during DNA replication.

Role of histone deacetylase 2 and its posttranslational modifications in cardiac hypertrophy

  • Eom, Gwang Hyeon;Kook, Hyun
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.131-138
    • /
    • 2015
  • Cardiac hypertrophy is a form of global remodeling, although the initial step seems to be an adaptation to increased hemodynamic demands. The characteristics of cardiac hypertrophy include the functional reactivation of the arrested fetal gene program, where histone deacetylases (HDACs) are closely linked in the development of the process. To date, mammalian HDACs are divided into four classes: I, II, III, and IV. By structural similarities, class II HDACs are then subdivided into IIa and IIb. Among class I and II HDACs, HDAC2, 4, 5, and 9 have been reported to be involved in hypertrophic responses; HDAC4, 5, and 9 are negative regulators, whereas HDAC2 is a pro-hypertrophic mediator. The molecular function and regulation of class IIa HDACs depend largely on the phosphorylation-mediated cytosolic redistribution, whereas those of HDAC2 take place primarily in the nucleus. In response to stresses, posttranslational modification (PTM) processes, dynamic modifications after the translation of proteins, are involved in the regulation of the activities of those hypertrophy-related HDACs. In this article, we briefly review 1) the activation of HDAC2 in the development of cardiac hypertrophy and 2) the PTM of HDAC2 and its implications in the regulation of HDAC2 activity.

Degradation or aggregation: the ramifications of post-translational modifications on tau

  • Park, Seoyoung;Lee, Jung Hoon;Jeon, Jun Hyoung;Lee, Min Jae
    • BMB Reports
    • /
    • v.51 no.6
    • /
    • pp.265-273
    • /
    • 2018
  • Tau protein is encoded in the microtubule-associated protein tau (MAPT) gene and contributes to the stability of microtubules in axons. Despite of its basic isoelectric point and high solubility, tau is often found in intraneuronal filamentous inclusions such as paired helical filaments (PHFs), which are the primary constituent of neurofibrillary tangles (NFTs). This pathological feature is the nosological entity termed "tauopathies" which notably include Alzheimer's disease (AD). A proteinaceous signature of all tauopathies is hyperphosphorylation of the accumulated tau, which has been extensively studied as a major pharmacological target for AD therapy. However, in addition to phosphorylation events, tau undergoes a number of diverse posttranslational modifications (PTMs) which appear to be controlled by complex crosstalk. It remains to be elucidated which of the PTMs or their combinations have pro-aggregation or anti-aggregation properties. In this review, we outline the consequences of and communications between several key PTMs of tau, such as acetylation, phosphorylation, and ubiquitination, focusing on their roles in aggregation and degradation. We place emphasis on the structure of tau protofilaments from the human AD brain, which may be good targets to modulate etiological PTMs which cause tau aggregation.

Dynamics of ARF regulation that control senescence and cancer

  • Ko, Aram;Han, Su Yeon;Song, Jaewhan
    • BMB Reports
    • /
    • v.49 no.11
    • /
    • pp.598-606
    • /
    • 2016
  • ARF is an alternative reading frame product of the INK4a/ARF locus, inactivated in numerous human cancers. ARF is a key regulator of cellular senescence, an irreversible cell growth arrest that suppresses tumor cell growth. It functions by sequestering MDM2 (a p53 E3 ligase) in the nucleolus, thus activating p53. Besides MDM2, ARF has numerous other interacting partners that induce either cellular senescence or apoptosis in a p53-independent manner. This further complicates the dynamics of the ARF network. Expression of ARF is frequently disrupted in human cancers, mainly due to epigenetic and transcriptional regulation. Vigorous studies on various transcription factors that either positively or negatively regulate ARF transcription have been carried out. However, recent focus on posttranslational modifications, particularly ubiquitination, indicates wider dynamic controls of ARF than previously known. In this review, we discuss the role and dynamic regulation of ARF in senescence and cancer.

A Molecular Model for Light Signal Perception and Interdomain Crosstalk in Phytochrome Photoreceptors

  • Song, Pill-Soon;Park, Chung-Mo
    • Journal of Photoscience
    • /
    • v.7 no.3
    • /
    • pp.79-86
    • /
    • 2000
  • Phytochromes are red and far-red light absorbing photoreceptors for photomorphogenesis in plants. The red/far wavelength reversible biliproteins are made up of two structural domains. The light-perceiving function of the photoreceptor resides in the N-terminal domain, whereas the signal transducing regulatory function is located within the C-terminal domain. The characteristic role of the phytochromes as phtosensory molecular switches is derived from the phototransformation between two distinct spectral forms, the red light absorbing Pr and the far-red light absorbing Pfr forms. The photoinduced Pr Pfr phototransformation accompanies subtle conformational changes throughout the phytochrome molecule. The conformational signals are subsequently transmitted to the C-terminal domain through various inter-domain crosstalks and induce the interaction of the activated C-terminal domain with phytochrome interacting factors. Thus the inter-domain crosstalks play critical roles in the photoactivation of the phytochromes. Posttranslational modifications, such as the phosphorylation of Ser-598, are also involved in this process through conformational changes and by modulating inter-domain signaling.

  • PDF

Molecular Cloning of Red Seabream, Pagrus major Somatolactin cDNA and Its Expression in Escherichia coli

  • Munasinghe, Helani;Koh, Soon-Mi;Lee, Jehee
    • Journal of Aquaculture
    • /
    • v.16 no.3
    • /
    • pp.165-170
    • /
    • 2003
  • Isolation, cloning and sequencing of red seabream (Pagrus major) somatolactin (rsbSL) cDNA from pituitary gland revealed an open reading frame of 693 bp coding for a pre-growth hormone of 231 amino acids with a 22 amino acid putative signal peptide. Deduced amino acid sequence showed that there was one possible N-glycosylation site at Asn$^{145}$ and seven Cys residues (Cys$_{29}$ , Cys$^{39}$ , Cys$^{66}$ , Cys$^{89}$ , Cys$^{205}$ , Cys$^{222}$ , Cys$^{230}$ ). Except Cys$^{66}$ , others may be involved in disulfide bond formation. The rsbSL presented a 93% amino acid sequence identity with the SL of gilthead seabream (Sparus aurata) and contained the conserved hormone domain region. Expression of rsbSL in E. coli (BL2l) cells and gel analysis revealed a higher molecular weight for rsbSL than expected theoretically, implying posttranslational modifications.

Quinetides: diverse posttranslational modified peptides of ribonuclease-like storage protein from Panax quinquefolius as markers for differentiating ginseng species

  • Zhao, Qiang;Bai, Yunpeng;Liu, Dan;Zhao, Nan;Gao, Huiyuan;Zhang, Xiaozhe
    • Journal of Ginseng Research
    • /
    • v.44 no.5
    • /
    • pp.680-689
    • /
    • 2020
  • Background: Peptides have diverse and important physiological roles in plants and are ideal markers for species identification. It is unclear whether there are specific peptides in Panax quinquefolius L. (PQ). The aims of this study were to identify Quinetides, a series of diverse posttranslational modified native peptides of the ribonuclease-like storage protein (ginseng major protein), from PQ to explore novel peptide markers and develop a new method to distinguish PQ from Panax ginseng. Methods: We used different fragmentation modes in the LTQ Orbitrap analysis to identify the enriched Quinetide targets of PQ, and we discovered Quinetide markers of PQ and P. ginseng using ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry analysis. These "peptide markers" were validated by simultaneously monitoring Rf and F11 as standard ginsenosides. Results: We discovered 100 Quinetides of PQ with various post-translational modifications (PTMs), including a series of glycopeptides, all of which originated from the protein ginseng major protein. We effectively distinguished PQ from P. ginseng using new "peptide markers." Four unique peptides (Quinetides TP6 and TP7 as markers of PQ and Quinetides TP8 and TP9 as markers of P. ginseng) and their associated glycosylation products were discovered in PQ and P. ginseng. Conclusion: We provide specific information on PQ peptides and propose the clinical application of peptide markers to distinguish PQ from P. ginseng.

Screening of Inhibitory Activity of Plant Extracts against Farnesyl Protein Transferase (식물추출물의 파네실 전달효소 저해활성 검색)

  • Kang, Hyun-Mi;Lee, Seung-Ho;Ryu, Shi-Yong;Son, Kwang-Hee;Yang, Deok-Cho;Kwon, Byoung-Mog
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.1 s.132
    • /
    • pp.91-99
    • /
    • 2003
  • Ras proteins play an important role in intracellular signal transduction pathways involved in cell growth and the mutated twas genes have been found in thirty percent of human cancers. Ras proteins (H-, K- and N-Ras) are small guanine nucleotide binding proteins that undergo a series of posttranslational modifications including the farnesylation onto cysteine 186 at C-terminal of Ras by farnesyl protein transferase (FPTase). This is a mandatory process for retention of transforming ability. Therefore, inhibitors of FPTase have a promising to be effective antitumor agents. In our screening program for FPTase inhibitors, the methanol extracts of 193 plants were screened for the inhibitory activity against FPTase partially purified from the rat brain. Extracts of 7species plants including Areca catechu, Saururus chinensis, Curcuma longa, Artemisa princeps, Paeonia suffruticosa, Spatholobus suberectus, Cinnamomum cassia, Cinnamomum japonicum inhibited more than 60% of FPTase activity at a concentration of $100\;{\mu}g/ml$.

Temporal and Spatial Expression Patterns of Nine Arabidopsis Genes Encoding Jumonji C-Domain Proteins

  • Hong, Eun-Hye;Jeong, Young-Min;Ryu, Jee-Youn;Amasino, Richard M.;Noh, Bosl;Noh, Yoo-Sun
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.481-490
    • /
    • 2009
  • Diverse posttranslational modifications of histones, such as acetylation and methylation, play important roles in controlling gene expression. Histone methylation in particular is involved in a broad range of biological processes, including heterochromatin formation, X-chromosome inactivation, genomic imprinting, and transcriptional regulation. Recently, it has been demonstrated that proteins containing the Jumonji (Jmj) C domain can demethylate histones. In Arabidopsis, twenty-one genes encode JmjC domain-containing proteins, which can be clustered into five clades. To address the biological roles of the Arabidopsis genes encoding JmjC-domain proteins, we analyzed the temporal and spatial expression patterns of nine genes. RT-PCR analyses indicate all nine Arabidopsis thaliana Jmj (AtJmj) genes studied are actively expressed in various tissues. Furthermore, studies of transgenic plants harboring AtJmj::${\beta}$-glucuronidase fusion constructs reveal that these nine AtJmj genes are expressed in a developmentally and spatially regulated manner.

Potential role of ANGPTL4 in cancer progression, metastasis, and metabolism: a brief review

  • Min Seok Park;Sang Eun Kim;Pureunchowon Lee;Ju-Hee Lee;Kyung Hee Jung;Soon-Sun Hong
    • BMB Reports
    • /
    • v.57 no.8
    • /
    • pp.343-351
    • /
    • 2024
  • Angiopoietin-like 4 (ANGPTL4) has been identified as an adipokine involved in several non-metabolic and metabolic diseases, including angiogenesis, glucose homeostasis, and lipid metabolism. To date, the role of ANGPTL4 in cancer growth and progression, and metastasis, has been variable. Accumulating evidence suggests that proteolytic processing and posttranslational modifications of ANGPTL4 can significantly alter its function, and may contribute to the multiple and conflicting roles of ANGPTL4 in a tissue-dependent manner. With the growing interest in ANGPTL4 in cancer diagnosis and therapy, we aim to provide an up-to-date review of the implications of ANGPTL4 as a biomarker/oncogene in cancer metabolism, metastasis, and the tumor microenvironment (TME). In cancer cells, ANGPTL4 plays an important role in regulating metabolism by altering intracellular glucose, lipid, and amino acid metabolism. We also highlight the knowledge gaps and future prospect of ANGPTL4 in lymphatic metastasis and perineural invasion through various signaling pathways, underscoring its importance in cancer progression and prognosis. Through this review, a better understanding of the role of ANGPTL4 in cancer progression within the TME will provide new insights into other aspects of tumorigenesis and the potential therapeutic value of ANGPTL4.