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Fig. 1. The INK4b/ARF/INK4a locus. The INK4b/ARF/INK4a locus 
encodes three proteins, including p15INK4b, p14ARF, and 
p16INK4a. The coding regions of p14ARF and p16ink4a start in 
different exons—exon 1, 1, and 1, respectively. Exon 2 of the 
INK4b/ARF/INK4a locus is shared by p14ARF and p16ink4a. They 
comprise completely different amino acids, despite sharing the 
exons 2 and 3, through an alternative reading frame.
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ARF is an alternative reading frame product of the INK4a/ARF 
locus, inactivated in numerous human cancers. ARF is a key 
regulator of cellular senescence, an irreversible cell growth 
arrest that suppresses tumor cell growth. It functions by 
sequestering MDM2 (a p53 E3 ligase) in the nucleolus, thus 
activating p53. Besides MDM2, ARF has numerous other 
interacting partners that induce either cellular senescence or 
apoptosis in a p53-independent manner. This further com-
plicates the dynamics of the ARF network. Expression of ARF is 
frequently disrupted in human cancers, mainly due to 
epigenetic and transcriptional regulation. Vigorous studies on 
various transcription factors that either positively or negatively 
regulate ARF transcription have been carried out. However, 
recent focus on posttranslational modifications, particularly 
ubiquitination, indicates wider dynamic controls of ARF than 
previously known. In this review, we discuss the role and 
dynamic regulation of ARF in senescence and cancer. [BMB 
Reports 2016; 49(11): 598-606]

INTRODUCTION

The tumor suppressors p15ink4b, p14ARF, and p16ink4a, are 
well-characterized products of the INK4b/ARF/INK4a gene 
locus. Corresponding to the region of mouse chromosome 4, 
this locus is situated on chromosome 9 of the human genome, 
within a 35 kb region. As expected for potent tumor suppressors, 
the INK4b/ARF/INK4a locus is frequently targeted for deletion 
or epigenetic suppression in numerous cancers. The coding 
regions of p14ARF and p16ink4a start from exons 1and 1
respectively. Moreover, owing to an alternative reading frame, 
they comprise of completely different amino acids despite 
sharing exons 2 and 3. Although p15ink4b has a similar role in 
cell cycle inhibition, it has a coding region physically 

separated from that of p14ARF and p16ink4a (Fig. 1) (1, 2). 
As a tumor suppressor, ARF is intimately related to p53 

stabilization, which induces cellular senescence and prevents 
tumor cell growth. ARF releases p53 from MDM2, a well- 
known E3-ubiquitin ligase of p53, by trapping MDM2 in the 
nucleolus via direct interaction, which physically separates 
p53 from MDM2 (3-6). Interaction of ARF with protein 
partners other than MDM2, also results in suppression of 
tumor growth via induction of either cellular senescence or 
apoptosis, in a p53-independent manner. These have been 
evidenced using p53-deficient cell lines and knockout (KO) 
mice models. Moreover, recent identification of posttranslational 
regulatory mechanisms further complicates the dynamics of 
the ARF mechanism (7-9). In this review, we discuss the 
transcriptional as well as posttranslational regulatory mechanisms 
of ARF, in an attempt to provide comprehensive understanding 
of the same. 

REGULATION OF ARF

Transcriptional regulation of ARF
Since the emergence of ARF as a tumor suppressor, the 
regulation of its expression has been one of the most pursued 
areas of research. Numerous transcription factors (TFs) regulate 
ARF either positively or negatively (Fig. 2). In particular, the 
E2F1 transcription factor (which controls genes involved in cell 
cycle regulation) induces ARF transcription by directly 
interacting with its binding site upstream of the exon 1thus 
activating apoptosis and cell growth arrest (10). This is one of 
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Fig. 2. Transcriptional regulation of ARF. Positive and negative 
regulators of ARF transcription. Transcriptional activators and re-
pressors are shown in the upper part and lower parts, respectively.

the most well characterized pathways of oncogene-induced 
senescence, activated upon oncogenic stress. However, this 
process is modulated differently by the various E2F isoforms. 
For instance, E2F3b, an isoform of E2F3, represses ARF 
transcription and stimulates cellular growth. The observation 
that the loss of ARF can rescue E2F3b depletion-mediated cell 
growth arrest clearly suggests anti-reciprocal correlation 
between these two proteins (11). Myc, another well-established 
and vigorously investigated oncogene, exhibits regulatory 
patterns similar to E2F1. To prevent hyper-proliferation of cells 
under oncogenic stress, it also activates fail-safe programs such 
as apoptosis and cellular senescence, by inducing ARF 
transcription (12). Frederique and colleagues reported that 
Myc overexpression induces accumulation of ARF both at the 
mRNA and protein levels in mouse embryonic fibroblasts 
(MEFs) (13). They showed that Myc-induced ARF activates p53 
signaling, thus preventing immortalization of the MEFs. Further, 
Myc also activates FoxO-mediated ARF transcription. Caroline 
and colleagues reported that Myc signaling increases nuclear 
FoxO, which in turn binds to the ARF promoter and thus 
suppresses Myc-driven lymphomagenesis in mice (14). A cyclin 
D-binding Myb-like protein, DMP1, also induces ARF. Kazushi 
and colleagues demonstrated that DMP1 binds to the ARF 
promoter and activates its transcription in MEFs, which results 
in cell cycle arrest (15). Furthermore, the ARF promoter also 
provides several binding sites for acute myeloid leukemia-1 
(AML1), which activates its transcription leading to cellular 
senescence in MEFs. However, the t(8;21) fusion protein 
AML1-ETO, which is frequently expressed in acute leukemia, 
represses ARF expression (16). Meanwhile, oncogenic signaling 
by RAS influences ARF expression in a DMP1-dependent 
manner. RAS signaling induces Jun-mediated DMP1 trans-
cription, thus increasing ARF expression (17). Next, Yanbin 

and colleagues suggested that TGFsignaling directly induces 
ARF expression. They found that TGF signaling elevates the 
ARF mRNA levels through Smad2/3 and p38 MAPKs in MEFs. 
Smad2/3 binds directly to the ARF promoter upon stimulation 
by TGF. However, it is yet to be addressed how Smad and 
p38 MAPK signaling cooperate to induce ARF expression (18). 
p38 MAPK has previously been reported to regulate ARF 
expression. Dmitry and colleagues found that decreased Wip1 
phosphatase increases ARF expression in a p38 MAPK- 
dependent manner in Ppm1d-/- MEFs (19). Moreover, a recent 
study suggests that HKR3 (Human Krüppel-related 3) activates 
ARF transcription by binding to the ARF promoter with 
coactivator p300, which induces acetylation of the histones 
H3 and H4 (20).

Several repressors of ARF transcription have also been 
reported (Fig. 2). For example, the polycomb group gene 
BMI-1 suppresses cellular senescence through repression of 
ARF transcription. BMI-1-deficient MEFs show impaired cell 
cycle progression and enter premature senescence, which are 
rescued by ARF depletion (21). BMI-1 also requires the EZH2- 
containing Polycomb-Repressive Complex 2 (PRC2) to repress 
ARF transcription. PRC2 maintains the levels of H3K27Me3 as 
well as the BMI-1/PRC1 complex at the ARF locus (22). 
Another polycomb group gene, CBX7, increases the lifespan of 
normal human cells and MEFs through suppression of ARF 
expression, independent of BMI-1 (23). Further, TBX2 
immortalizes MEFs and decreases senescence in normal 
human cells by repression of ARF transcription (24). Basic 
helix-loop-helix (bHLH) transcription factor Twist-1 activates 
the recruitment of EZH2 to the ARF transcription start site. 
Thus, it increases the levels of H3K27Me3 on the ARF locus, 
followed by repression of ARF transcription (25). 

Although many factors that regulate the transcription of ARF 
are well described, its posttranslational regulation is largely 
unknown. Recently, some posttranslational regulators of ARF 
have been reported, thus magnifying its importance in 
senescence and tumorigenesis.

Posttranslational regulation of ARF
Although the functional importance of ARF in cellular 
senescence and tumor suppression is well characterized, 
knowledge about its posttranslational regulation is limited. A 
previous report suggested that ARF, which has no lysine sites, 
is polyubiquitinated at its N-terminus followed by proteasomal 
degradation by an unknown E3-ubiquitin ligase (26). Five 
years later, the first E3-ubiquitin ligase for ARF (TRIP12) was 
identified and named ULF (ubiquitin ligase for ARF) (Fig. 3) (7). 
ULF induces polyubiquitination and proteasomal degradation 
of ARF, thus activating cell proliferation. Interestingly, the 
ULF-mediated degradation of ARF is further regulated by NPM 
and c-Myc, suggesting that Myc regulates ARF both 
transcriptionally and translationally. Subsequently, Ko and 
colleagues reported a second E3-ubiquitin ligase, Makorin 1 
(MKRN1), which targets ARF. MKRN1 KO MEFs presented 
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Fig. 4. p53 dependent and independent
tumor suppressive functions of ARF. ARF
plays a key role in cellular senescence 
and tumorigenesis through activation of 
the p53 pathway. ARF binds and seques-
ters MDM2 in the nucleolus, leading to 
the activation of p53 in the nucleoplasm.
p53 transcribes numerous target genes 
and activates cellular senescence or 
apoptosis. ARF also functions in a p53- 
independent manner through interaction
with numerous target proteins. ARF re-
gulates sumoylation, transcription acti-
vities, or protein turnover of target 
proteins, which lead to tumor suppression
and senescence.

Fig. 3. Posttranslational regulation of ARF. Three ubiquitin E3 
ligases have been reported. ULF, MKRN1, and Siva1 bind directly 
to, and induce ubiquitination of ARF, resulting in the induction of 
its proteasomal degradation.

retarded cell growth and senescence with concomitant 
increase in the ARF protein levels (8). Corroborating these 
results, MKRN1 was shown to induce ubiquitination and 
proteasomal degradation of ARF. Moreover, its ablation 
decreased tumor growth through induction of the ARF- 
dependent senescence in xenograft models using p53-positive 
and -negative gastric cancer cell lines. Further, tumor tissues 
from gastric cancer patients showed negative correlation 
between MKRN1 and ARF proteins. Siva1, an E3-ubiquitin 
ligase for ARF, induces the proteasomal degradation of ARF, 

thus inhibiting p53 function (9). The existence of several E3 
ligases for ARF is intriguing. Systemic studies on the cellular 
localization of these E3 ligases might help to shed some light. 
It is also possible that each ligase is a mediator that links the 
different signaling pathways involving ARF. Extensive studies 
on each ligase are required for the complete elucidation of 
ARF regulation. 

ARF IN SENESCENCE AND CANCER

Tumor suppressive function of ARF 
Senescence is an irreversible cell growth arrest that prevents 
the hyper-proliferation of cancer cells. As oncogenic signal 
stimulation always carries the risk of cancer cell eruption, 
normal cells require senescence as a fail-safe program to 
prevent this hyper-proliferation and tumorigenesis. ARF plays a 
key role in this fail-safe program through activation of the p53 
pathway (Fig. 4). ARF binds and sequesters MDM2 in the 
nucleolus, leading to the activation of p53 in the nucleoplasm 
(3-6). The activated p53 then promotes transcription of 
numerous target genes such as BAX or p21, thus inducing 
either cellular senescence or apoptosis (27-29). Mice lacking 
p19ARF are susceptible to early tumors. In fact, ARF and p53 
double KO mice have tumor incidences similar to those with 
p53 KO alone. This suggests that the tumor suppressive 
function of ARF is entirely p53-dependent (30). 

While there is no argument on the dependency of ARF on 
p53, some evidence shows that ARF might have a p53- 
independent tumor suppressive function as well. Weber and 
colleagues reported that triple KO (TKO) mice for MDM2, 
p53, and p19ARF show greater frequency of multiple tumors 
than do double KO mice for MDM2 and p53. Moreover, 
reintroduction of ARF into TKO MEFs induces cell cycle arrest. 
These results suggest that ARF has an additional tumor 
suppressive role that is p53/MDM2-independent (31). Genetic 
deficiency in ARF, but not p53, accelerates the development 
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of melanoma in a genetically engineered mouse model, while 
senescence is induced in p53- but not in ARF-deficient primary 
melanocytes (32). The induction of cell cycle arrest, cellular 
senescence, apoptosis, and regression in xenograft tumors by 
ARF in p53-deficient cell lines indicates the obvious p53- 
independent roles for ARF (33-38). Possibly, p53-independent 
functions of ARF are through its interactions with numerous 
regulatory proteins (Fig. 4). For example, Tip60 directly binds 
to and induces acetylation of retinoblastoma (RB), leading to 
its destabilization through proteasomal degradation. ARF 
prevents the Tip60-mediated RB acetylation and leads to 
accumulation of hyper-phosphorylated RB, which then triggers 
anti-proliferative functions (39). Further, through MALDI-TOF 
analyses, NPM is identified as a binding partner of ARF. ARF 
binds and sequesters NPM in the nucleolus, thus blocking its 
nucleocytoplasmic shuttling, and resulting in subsequent cell 
growth arrest (40, 41). ARF also inhibits the activities of 
various TFs such as E2F1, HIF-1 Foxm1, c-Myc and n-Myc 
through direct interaction, thus preventing cell proliferation 
(33, 42-45). This demonstrates the negative feedback regulation 
of ARF induced by some of these TFs. ARF also induces the 
ATR/CHK1-dependent RelA (NF-kB) phosphorylation and 
reduces its transcriptional activity (46). Furthermore, CtBP1 
and 2, transcription co-repressors that have anti-apoptotic 
functions, are also reported to interact with ARF. Binding of 
ARF to CtBP1 and 2 promotes their proteasomal degradation 
(47). In addition, ARF also stimulates the sumoylation of 
several target proteins including NPM, MDM2, WRN, and 
Miz-1 (48-52). While its mechanism remains unclear, the 
observation that ARF interacts with UBC9, a sumo E2 
conjugating enzyme, indicates that ARF might facilitate sumo 
transfer from the E2 complex to its target proteins (52). In 
addition, there are many other proteins that interact with ARF 
(such as HPV16E7, HSP70 and others) and assist in its 
p53-dependent or -independent functions (53, 54).

In short, ARF has numerous interacting partners other than 
MDM2, which facilitate and maximize its tumor suppressive 
effect via induction of cellular senescence or apoptosis in 
p53-dependent or -independent manner (Fig. 4). Given its 
p53-dependent and -independent functions, elaborate studies 
on the context-dependent roles of ARF are required, since 
most cancer cells are either deprived of p53 or carry mutant 
p53.

ARF KO mice
The first KO mice for ARF were developed even before it was 
found that INK4a and ARF coexist on the same genomic locus. 
As a result, the first KO mice had both the INK4a and ARF 
sites eliminated. These mice spontaneously developed various 
types of cancers within the first year. KO MEFs also displayed 
significantly faster growth rate than wild type MEFs. 
Furthermore, they were transformed by oncogenic stimulus of 
RASV12 (55). Later, mice lacking p19ARF but not p16INK4a 
were generated by targeting exon 1. These mice also 

developed numerous tumors, spontaneously as well as upon 
carcinogen treatment, leading to death within the first year. In 
several mouse strains (C57BL6, 129svj X C57BL6 and FVB), 
ARF-specific KO mice develop sarcoma, squamous cell 
carcinoma, lung carcinoma, and metastatic lymphoma. 
Moreover, exposure to carcinogens such as DMBA, X-rays, 
and irradiation make ARF KO mice more prone to tumors 
(Table 1) (56-58). The fact that mice and MEFs lacking ARF 
alone show similar features of cancer development and cell 
growth, elicited a curiosity about the characteristics of mice 
KO for Ink4a alone. In contrast to p19ARF-deficient MEFs, 
MEFs that lack p16Ink4a but retain p19ARF show normal cell 
growth features and are susceptible to RAS-induced senescence 
(59). Meanwhile, p16-null MEFs exhibit increased immortali-
zation compared with wild type MEFs, though less compared 
with p19ARF KO and p19ARF/p16ink4a KO MEFs. KO mice 
lacking p16 alone also develop spontaneous and carcinogen- 
induced tumors, which indicate that p16Ink4a functions as a 
tumor suppressor in association with p19ARF. 

Immunoglobulin promoter enhancer (E)-driven Myc ex-
pression promotes B-cell lymphoma in mice. The B-cell 
lymphoma latency is significantly shortened in mice lacking 
both Ink4a and ARF, or ARF alone (27, 60, 61). Moreover, the 
role of the INK4a/ARF locus in HRASV12-induced melanoma 
has been reported using melanocyte-specific HRASV12 
transgenic mice. Mice lacking p19ARF and p16ink4a develop 
melanoma with short latency and high penetrance (62). 

The tumor suppressive role of Ink4a/ARF was also studied in 
a super Ink4a/ARF mouse strain (carrying a transgenic copy of 
the entire INK4a/ARF locus), wherein increased activities of 
these tumor suppressors were observed (63). Furthermore, 
cells derived from these mice showed increased resistance to 
oncogene-induced transformation. Surprisingly, the super 
Ink4a/ARF mice showed higher resistance to carcinogen- 
induced tumor development without affecting normal viability 
and aging. This suggests that restricted increase of tumor 
suppressors at systemic levels might enhance an individual’s 
ability to resist cancer development.

Status of ARF in human cancers
Given that ARF plays an important role in tumor suppression, 
its deregulation in numerous cancers is also reported (Table 2). 
Studies on the deregulation of ARF have focused on gene loss 
or silencing by promoter hyper methylation and mutation. Its 
expression patterns are mainly studied at the transcript level 
because of its low expression, and availability constraints of its 
antibodies for immunohistochemistry. However, ARF protein 
expression in human cancers has been constantly pursued, 
since the importance of its posttranslational regulation was 
postulated. Low mRNA levels of ARF are frequently observed 
in human cancers, including those of the breast, colon, and 
liver. This has chiefly been attributed to gene silencing by 
promoter methylation and deletion of the gene locus. Both 
homologous deletion and loss of heterozygosity for this locus 
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Strain Targeting site Treatment Type of tumor formation Latency Ref 

ARF-/- 129svj X 
C57BL6 

Exon1 None Sarcoma (43%) 
Lymphoid malignancies (29%) 
Carcinoma (17%) 
/Squamous cell carcinoma /Pulmonary adenocarcinoma 
/Poorly differentiated carcinoma in pancreas 
/Salivary gland carcinoma 
Tumors of the nervous system (11%) 
/Spinal cord neural sheath tumor/Glioma 

∼38 weeks 56 

DMBA Squamous cell carcinoma 
/+Lymphoma 
/+Sarcoma and adnexal tumor 
/+Sarcoma and lymphomax 
/+sarcoma 

∼24 weeks 

X-ray Sarcomas 
Lymphoma 
Meningeal tumor 

ARF-/- FVB Exon1 None Small lymphoma (33%) 
Malig. Sp. Cell neo (30%) 
Lung carcinoma (12%) 
Osteogenic sarcoma (9%) 
Tumors of the nervous system (9%) 
Carcinoma/HCC (6%) 

∼62 weeks 57 

DMBA Small lymphoma (60%) 
Malig. Sp. Cell neo (40%) 
Lung carcinoma (15%) 

∼24 weeks 

ARF-/- C57Bl/6 Exon1 None Fibrosarcoma (33.3%) 
Metastatic salivary gland carcinoma (16.7%) 
Thymoma (16.7%) 
Malignant fibrous histocytoma (16.7%) 
Lymphoma (brain) (16.7%) 

∼21 weeks 58 

DMBA Epidermal papilloma (55.5%) 
Lymphoma, Epidermal papilloma 
Fibrosarcoma, malignant adenexal tumor 
Fibrosarcoma, epidermal papilloma 
Invasive epidermoid carcinoma 

∼20 weeks 

Irradiation Fibrosarcoma (50%) 
Lymphoma (brain) (50%) 

∼19 weeks 

INK4a-/- FVB Exon1 None Soft-tissue sarcoma (12.8%) 
Splenic lymphoma (10.25%) 
Melanoma (2.56%) 

∼44 weeks 59 

DMBA Thymic lymphoma (13%) 
Splenic lymphoma (6%) 
Soft-tissue sarcoma (10%) 
Malignant spindle-cell neoplasma (6%) 
Lung adenoma (6%) 
Squamous papilloma (29%) 

∼23 weeks 

INK4a-/ - , 
ARF-/-

C57BL/6 Exon2, 3 None Fibrosarcoma (33.3%) 
Sarcoma 
Liposarcoma, Lyphoma 
Angiosarcoma 
B-cell lymphoma 
Lymphoma 

∼36 weeks 55

UV Fibrosarcoma (50%) 
Squamous cell carcinoma 
Lymphoma 

∼36 weeks 

DMBA+UV Fibrosarcoma (50%) 
B-cell lymphoma 
Lymphoma 
Low grade Fibrosarcoma 
Squamous cell carcinoma 

∼14 weeks 

Table 1. Knockout mice of ARF and INK4a 
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Tissue 
type ARF status Frequency 

(%) Ref

Breast Low mRNA 77 70 
Promoter methylation 50 
HD 11.5 
LOH 27 
High mRNA 17 
No alteration 88 
Promoter methylation 24 71 

Bladder Promoter methylation 56 72 
LOH 22 68
HD 14 
Mutation 2 

Colon Promoter methylation 33 73 
Promoter methylation 50.8 74 
Promoter methylation 28.2 80 
Promoter methylation 32 75 

Liver Promoter methylation 25 76
HD 4 
LOH 16 
Promoter methylation 12 77 
HD 2.3 67
Mutation 4.6 
High mRNA 93.2 

Gastric Promoter methylation (diffuse type) 45.5 78 
Promoter methylation (intestinal) 25 

Lung Promoter methylation 30 69 
LOH 26 
Promoter methylation 8 79 

Oral Promoter methylation 18 66 
HD 12 
Promoter methylation 43.8 64 
HD 26.5 

Prostate Promoter methylation 6.25 65 
HD 6.25 

Kidney HD 23.5 81 
Brain Promoter methylation 22 79 

HD: Homologus Deletion, LOH: Loss Of Heterozygosity.

Table 2. ARF status in human cancers 

have been detected in human cancers (35, 44, 64-69). These 
alterations mostly result in deletion of the entire INK4a/ARF 
locus affecting the expressions of both ARF and Ink4a. The 
best-known genetic alteration that specifically affects ARF 
expression is promoter hyper methylation. In this context, the 
ARF promoter is a CpG island that can be silenced by DNA 
hyper methylation. Silencing of the gene by this mechanism is 
reported in numerous human cancers including those of the 
colon, liver, breast, and lung (64-66, 69-82). Hyper-methylation 
of the ARF promoter occurs independently of the INK4a 
promoter methylation, suggesting specific alteration of the ARF 
expression in these cancers. Conversely, elevated levels of 

ARF mRNA are reported in tumors (68). ARF might also be 
upregulated in cancers by various oncogenic stimuli such as 
c-Myc, RAS, and E2F1. Furthermore, mutations such as short 
deletions or insertions in the ARF-specific exon 1 and 
missense mutations in exon 2 have been frequently reported in 
familial melanoma syndromes (83-86). 

Sylvie and colleagues reported that protein expression of 
ARF is low in lung cancer, and that there is frequent un-
coupling between transcript and protein levels (87). Thus, they 
suggested that ARF also gets inactivated at the posttranslational 
level in cancers. In a recent study, the authors also reported 
that the ARF protein in gastric cancer is expressed at low 
levels, and is negatively correlated with MKRN1 expression 
(an E3 ubiquitin ligase that induces ARF degradation) (8). 
These results also support the importance of the posttranslational 
regulation of ARF in tumor suppression/progression. 

CONCLUSION

The role of ARF in tumor suppression is relatively well 
established through various experiments using cancer cells, 
mice models, and human patients with cancer. As is well 
known, the key mechanism of tumor suppression by ARF is 
induction of cellular senescence via activation of the p53 
pathway. ARF binds and sequesters MDM2 in the nucleolus, 
thus preventing the degradation of p53. However, the 
p53-independent role of ARF is still to be clearly delineated, 
and its targets verified. Toward this, KO mice models have 
proven to be useful, as shown by Weber and colleagues 
(discussed above). These results led to the discovery of novel 
ARF interacting partners that regulate tumor suppression in a 
p53-independent manner. However, the discovery of too 
many interacting partners has now caused considerable 
confusion. ARF interacts with numerous partners and regulates 
their sumoylation, transcriptional activities, or protein turnover, 
resulting in p53-independent inhibition of tumor cell growth. 
As p53 is frequently mutated in many cancers, a clear 
understanding of this p53-independent function of ARF might 
provide crucial clues to finding therapeutic targets in p53- 
mutated cancers. To this end, the downstream and upstream 
factors of ARF, along with their regulatory mechanisms, must 
be addressed extensively. In addition, the differential post-
translational regulation of ARF associated with tumor suppression 
and tumorigenesis must be elucidated using mouse models 
and human patient samples.
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