• 제목/요약/키워드: Post-classification

검색결과 403건 처리시간 0.027초

Algorithm for Discrimination of Brown Rice Kernels Using Machine Vision

  • C.S. Hwang;Noh, S.H.;Lee, J.W.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.823-833
    • /
    • 1996
  • An ultimate purpose of this study is to develop an automatic brown rice quality inspection system using image processing technique. In this study emphasis was put on developing an algorithm for discriminating the brown rice kernels depending on their external quality with a color image processing system equipped with an adaptor for magnifying the input image and optical fiber for oblique illumination. Primarily , geometrical and optical features of sample images were analyzed with unhulled paddy and various brown rice kernel samples such as sound, cracked, green-transparent , green-opaque, colored, white-opaque and brokens. Secondary, an algorithm for discrimination of the rice kernels in static state was developed on the basis of the geometrical and optical parameters screened by a statistical analysis(STEPWISE and DISCRIM Procedure, SAS ver.6). Brown rice samples could be discriminated by the algorithm developed in this study with an accuracy of 90% to 96% for the sound , cracked, colored, broken and unhulled , about 81% for the green-transparent and the white-opaque and about 75% for the green-opaque, respectively. A total computing time required for classification was about 100 seconds/1000 kernels with the PC 80486-DX2, 66MHz.

  • PDF

Proposal of a new method for learning of diesel generator sounds and detecting abnormal sounds using an unsupervised deep learning algorithm

  • Hweon-Ki Jo;Song-Hyun Kim;Chang-Lak Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.506-515
    • /
    • 2023
  • This study is to find a method to learn engine sound after the start-up of a diesel generator installed in nuclear power plant with an unsupervised deep learning algorithm (CNN autoencoder) and a new method to predict the failure of a diesel generator using it. In order to learn the sound of a diesel generator with a deep learning algorithm, sound data recorded before and after the start-up of two diesel generators was used. The sound data of 20 min and 2 h were cut into 7 s, and the split sound was converted into a spectrogram image. 1200 and 7200 spectrogram images were created from sound data of 20 min and 2 h, respectively. Using two different deep learning algorithms (CNN autoencoder and binary classification), it was investigated whether the diesel generator post-start sounds were learned as normal. It was possible to accurately determine the post-start sounds as normal and the pre-start sounds as abnormal. It was also confirmed that the deep learning algorithm could detect the virtual abnormal sounds created by mixing the unusual sounds with the post-start sounds. This study showed that the unsupervised anomaly detection algorithm has a good accuracy increased about 3% with comparing to the binary classification algorithm.

한반도 토지피복도 제작을 위한 다시기 Landsat ETM+ 영상의 정합 방법 (Multi-temporal Landsat ETM+ Mosaic Method for Generating Land Cover Map over the Korean Peninsula)

  • 김선화;강성진;이규성
    • 대한원격탐사학회지
    • /
    • 제26권2호
    • /
    • pp.87-98
    • /
    • 2010
  • 한반도 전역과 같은 상대적으로 넓은 지역의 정확한 분류를 위해서는 단일 영상 분류 후 영상정합 방식보다는 영상 정합 후 분류방법이 보다 정확하다. 또한 다중시기 정보는 분류에 매우 유용하게 사용될 수 있다. 본 연구에서는 한반도 전역을 대상으로 최적의 Landsat ETM+ 영상정합 방식을 제시하였다. 한반도 전역에 대해 2000년부터 2001년까지 획득된 총 65개의 Landsat ETM+영상을 이용하여 낙엽기, 이앙기, 개엽기 각각 정합 영상을 제작하였다. 이때 보다 정확한 영상정합을 위해 히스토그램 매칭, 중앙영상을 기준으로 한 1차 회귀식적용방법, Landsat 촬영 패스별로 적용한 1차 회귀식 적용방법, 총 세 가지 상대복사보정 방법을 적용하였다. 적용 결과, 패스별 상대복사보정한 결과가 그 보정 효과가 크면서, 높은 분류 정확도를 나타냈다. 또한 시기별 정합영상을 살펴보면, 개엽기의 정합영상이 타시기에 비해 상대적으로 인접한 영상 간 지표물의 변이가 다양하게 나타나는 것을 볼 수 있었다.

랜�V-5호(號) TM 데이타를 이용(利用)한 구분후(區分后) 비교(比較) 및 영상대차(映像對差)의 습지대(濕地帶) 변화(變化) 탐지(探知) 기법(技法)에 관(關)한 비교연구(比較硏究) (A Comparative Study of Wetland Change Detection Techniques Using Post-Classification Comparison and Image Differencing on Landsat-5 TM Data)

  • 정성학
    • 한국산림과학회지
    • /
    • 제81권4호
    • /
    • pp.346-356
    • /
    • 1992
  • 미서부(美西部)의 광대한 Snake강(江) 범람평원은 홍수로 인하여 수로(水路) 및 식생형(植生型)의 빈번한 변화 및 침해를 받아왔다. 1985년과 1988년 기간 동안의 습지대 식생형의 변화를 탐지하기 위하여, 원격탐사의 변화탐지 기법(技法) 중 구분후(區分后) 비교(比較) 및 영상대차법(映像對差法) 등을 Landsat-5호 TM 디지탈 데이타를 이용하여 비교 고찰 하였다. 대차(對差)된 적외선대(外線帶) 영상들이 가시대(可視帶) 영상을보다 나은 정확도 지표(指標)를 보였으며, 역기법(閾技法)을 적용하여, 영상대차법에 의하여 변형된 영상들로부터 변화(變化)와 무변화(無變化)를 구분하였다. 또한, 여러 정확도 지표들 즉, 카파 일치계수(一致係數), 총정확도, 생산자 정확도, 이용자 정확도 및 평균정확도(생산자 및 이용자 정확도 등에 근거한) 등을 이용하여 최적역영역(最適閾領域)을 결정함에 있어서의 문제점들을 고찰하였다.

  • PDF

A comparison of ATR-FTIR and Raman spectroscopy for the non-destructive examination of terpenoids in medicinal plants essential oils

  • Rahul Joshi;Sushma Kholiya;Himanshu Pandey;Ritu Joshi;Omia Emmanuel;Ameeta Tewari;Taehyun Kim;Byoung-Kwan Cho
    • 농업과학연구
    • /
    • 제50권4호
    • /
    • pp.675-696
    • /
    • 2023
  • Terpenoids, also referred to as terpenes, are a large family of naturally occurring chemical compounds present in the essential oils extracted from medicinal plants. In this study, a nondestructive methodology was created by combining ATR-FT-IR (attenuated total reflectance-Fourier transform infrared), and Raman spectroscopy for the terpenoids assessment in medicinal plants essential oils from ten different geographical locations. Partial least squares regression (PLSR) and support vector regression (SVR) were used as machine learning methodologies. However, a deep learning based model called as one-dimensional convolutional neural network (1D CNN) were also developed for models comparison. With a correlation coefficient (R2) of 0.999 and a lowest RMSEP (root mean squared error of prediction) of 0.006% for the prediction datasets, the SVR model created for FT-IR spectral data outperformed both the PLSR and 1 D CNN models. On the other hand, for the classification of essential oils derived from plants collected from various geographical regions, the created SVM (support vector machine) classification model for Raman spectroscopic data obtained an overall classification accuracy of 0.997% which was superior than the FT-IR (0.986%) data. Based on the results we propose that FT-IR spectroscopy, when coupled with the SVR model, has a significant potential for the non-destructive identification of terpenoids in essential oils compared with destructive chemical analysis methods.

연역적이고 국부적인 영문자의 폰트 분류법 ($\emph{A Priori}$ and the Local Font Classification)

  • 정민철
    • 한국산학기술학회논문지
    • /
    • 제3권4호
    • /
    • pp.245-250
    • /
    • 2002
  • 본 연구에서는 영문 단어로부터 폰트를 분류하기 위해 연역적이고 국부적인 폰트 분류 방법을 제안한다. 이는 문자 인식 전에 한 단어의 폰트를 분류하는 것을 말한다. 폰트 분류를 위해 활자 특성인 Ascender, Descender와 Serif가 사용된다. 입력 단어로부터 Ascender, Descender 와 Serif가 추출되어 경사도 특징 벡터가 추출되고, 그 특징 벡터는 인공 신경망에 의해 입력 단어에 대한 폰트 스타일, 폰트 그룹, 폰트 이름이 분류된다. 제안된 연역적이고 국부적인 폰트 분류 방법은 폰트 정보가 문자 분할기와 문자 인식기에 사용될 수 있게 한다. 나아가, 특정 폰트에 따른 Mono-Font 문자 분할기와 Mono-Font 문자 인식기로 구성되는 OCR 시스템을 구성할 수 있는 것을 가능하게 한다.

  • PDF

전기비저항탐사결과와 터널막장 암반분류의 상관성 검토 (A study on the correlation between the result of electrical resistivity survey and the rock mass classification values determined by the tunnel face mapping)

  • 최재화;조철현;류동우;김학규;서백수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.265-272
    • /
    • 2003
  • In this study, the rock mass classification results from the face mapping and the resistivity inversion data are compared and analyzed for the reliability investigation of the determination of the rock support type based on the surface electrical survey. To get the quantitative correlation, rock engineering indices such as RCR(rock condition rating), N(Rock mass number), Q-system based on RMR(rock mass rating) are calculated. Kriging method as a post processing technique for global optimization is used to improve its resolution. The result of correlation analysis shows that the geological condition estimated from 2D electrical resistivity survey is coincident globally with the trend of rock type except for a few local areas. The correlation between the results of 3D electrical resistivity survey and the rock mass classification turns out to be very high. It can be concluded that 3D electrical resistivity survey is powerful to set up the reliable rock support type.

  • PDF

객체지향 기법을 이용한 RC통합 구조설계 시스템의 후처리 모듈 개발 (Development of Post-processing Modules in an Integrated System for Reinforced Concrete Structures Using Object-Oriented Techniques)

  • 이진우;천진호;김우범;이병해
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.352-361
    • /
    • 1998
  • The post-processing modules are parts of an integrated system for reinforced concrete structures. This modules are composed of two modules: member design module and calculation report module. The purpose of this paper is to develope modules that increase efficiency and usefulness of an integrated system used reinforced concrete structures design. The development of post-processing modules is necessary for user to design reinforced concrete structures conveniently and quickly. This modules are connected with central database for the benefit of storing amount of input/output data and being used system with little effort. Post-processing modules used Object-Oriented concepts and techniques include identity, classification, polymorphism, and inheritance. Member design module automatically converts no good members into satisfied members by changing section size or reinforcement bar arrangement. This module can be operated both independent member design modules with user input and a part of integrated system with database input. If user operates member design module, calculation report module is created automatically.

  • PDF

Support Vector Machine 기반 지형분류 기법 (Terrain Cover Classification Technique Based on Support Vector Machine)

  • 성기열;박준성;유준
    • 전자공학회논문지SC
    • /
    • 제45권6호
    • /
    • pp.55-59
    • /
    • 2008
  • 야외 환경에서 무인차량의 자율주행에 있어서 효과적인 기동제어를 위해서는 장애물 탐지나 지형의 기하학적인 형상 정보외에 탐지된 장애물 및 지형 표면에 대한 재질 유형의 인식 및 분류 또한 중요한 요소이다. 영상 기반의 지표면 분류 알고리듬은 입력 영상에 대한 전처리, 특징추출, 분류 및 후처리의 절차로 수행된다. 본 논문에서는 컬러 CCD 카메라로부터 획득된 야외 지형영상에 대해 색상 및 질감 정보를 이용한 지형분류 기법을 제시한다. 전처리 단계에서 색공간 변환을 수행하고, 색상과 질감 정보를 이용하기 위해 웨이블릿 변환 특징을 사용하였으며, 분류기로서는 SVM(support vector machine)을 적용하였다. 야외 환경에서 획득된 실영상에 대한 실험을 통하여 제시된 알고리듬의 분류 성능을 평가하였으며, 제시된 알고리듬에 의한 효과적인 야지 지형분류의 가능성을 확인하였다.

욕창 분류체계교육프로그램이 병원간호사의 욕창 분류체계와 실금관련 피부염에 대한 지식과 시각적 감별 능력에 미치는 효과 (Effects of Pressure Ulcer Classification System Education Program on Knowledge and Visual Discrimination Ability of Pressure Ulcer Classification and Incontinence-Associated Dermatitis for Hospital Nurses)

  • 이윤진;박승미
    • Journal of Korean Biological Nursing Science
    • /
    • 제16권4호
    • /
    • pp.342-348
    • /
    • 2014
  • Purpose: The purpose of this study was to examine the effects of pressure ulcer classification system education on hospital nurses' knowledge and visual discrimination ability of pressure ulcer classification system and incontinence-associated dermatitis. Methods: One group pre- and post-test was used. A convenience sample of 96 nurses participating in pressure ulcer classification system education, were enrolled in single institute. The education program was composed of a 50-minute lecture on pressure ulcer classification system and case-studies. The pressure ulcer classification system and incontinence-associated dermatitis knowledge test and visual discrimination tool, consisting of 21 photographs including clinical information were used. Paired t-test was performed using SPSS/WIN 18.0. Results: The overall mean difference of pressure ulcer classification system knowledge (t=4.67, p<.001) and visual discrimination ability (t=10.58, p<.001) were statistically and significantly increased after pressure ulcer classification system education. Conclusion: Overall understanding of pressure ulcer classification system and incontinence-associated dermatitis after pressure ulcer classification system education was increased, but tended to have lack of visual discrimination ability regarding stage III, suspected deep tissue injury. Differentiated continuing education based on clinical practice is needed to improve knowledge and visual discrimination ability for pressure ulcer classification system, and comparison experiment research is required to evaluate its effects.