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A Comparative Study of Wetland Change Detection
Techniques Using Post-Classification Comparison and
Image Differencing on Landsat-5 TM Data’
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ABSTRACT

The extensive Snake River floodplain in Northwest United States has experienced major changes in water
channels and vegetation types due to floodings. To detect the change of wetland cover-types for the period
of 1985 and 1988, post-classification comparison and image differencing change detection techniques were
evaluated using Landsat-5 TM digital data. Differenced infrared-band images indicated better accuracy
indices than any visible-band images. A thresholding technique was applied to identify the change and no
~change categories from the transformed images produced by image differencing. The problems in using
differert accuracy indices, including the Kappa coefficient of agreement, overall accuracy, producer’s
accuracy, user's accuracy, and average accuracy(based on both the producer’s and user’s accuracy
approaches) in determining an optimal threshold level, were examined.

Key words | Wetland change detection, post-classification comparison, image differencing, and Kappa coeffi-
cient of agreement
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INTRODUCTION

Remote sensing has become an important tool in
wetland management, providing much of the
required data base information and monitoring capa-
bility. During the past two decades, legislation re-
quiring wetland classification and inventory, con-
cerns for wetland losses, the need for habitat evalua-
tion, and the increased availability of aircraft and
satellite data have rapidly expanded remote sensing
research and technology related to wetlands. Use of
remotely sensed data for wetland inventory and
mapping is now common in government agencies,
although research continues for improved methodol-
ogy and new sensors (Christensen, 1987) .

One of the most important applications of digital
remote sensing data is the recording of land use/
cover changes through time. Remote sensing-based
change detection utilizes multiple-date imagery to
identify both temporal and spatial changes. Differ-
ent dates of Landsat MSS (Multispectral Scanner)
and TM (Thematic Mapper) satellite imagery have
been used to detect and monitor suburban sprawl,
deforestation, crop development, etc. (Nelson,
1983 ; Adeniyi, 1985). Relatively few investigations
have applied satellite digital data to wetland change
detection{Howarth and Wickware, 1981 . Frick,
1984) .

Although a number of change detection techinques
using Landsat digital data are now available, the
remote sensing specialist and the resource manager
need to know how and when to apply such techniques
in an operational monitoring program. The purpose
of this paper is to outline the procedures that could
be practically followed and the information to be
expected from each step in the process in a long
-term operational monitoring program for remote
areas. Previous works by Griffiths(1988) and
Howarth and Wickware (1981), which demonstrated
what can be achieved in studying change using image
differencing and post-classification comparison
change detection, is used to illustrate this monitor-

ing process,

MATERIALS AND METHODS

Study Area

The 500-year floodplain adjacent to the leveed
reaches of the Snake River in the Jackson Hole,
Wyoming area was selected since it has numerous
and diverse wetlands. The study area occupies a
corridor of up to approximately three miles (five km)
in width and 14 miles(23 km) in length extending
from Wilson Bridge to Route 189 Bridge crossing on
the south end of Jackson Hole. This area has experi-
enced frequent floodings even with its well-devel-
oped dike systems{USACE, 1989). Throughout the
period of 1985 to 1988, both river channel and vegeta-
tion changes were sufficient to be readily recorded
by Landsat imagery.

Data Sources

From the available Landsat data, two Landsat-5
TM images dated on 15 August 1985(Scene-ID
Y5053217370X0) and 23 August 1988 (Scene-ID
Y5163617381X0) of path 38 and row 30 were selected
for the wetland change detection analysis and their
digital-floppy disk products were purchased from
the Earth Observation Satellite Company (EOSAT) .
A TM digital-floppy disk product (subscene) covers
an area represented by 512x512 pixels, or about
12 % 15km (=180km?) .
and were collected at near-anniversary dates. The

Both images are cloud-free

analyses of these data were carried out using a
commercial image analysis system marketed by the
Earth Resources Data Analysis System, Inc.
(ERDAS) and an ARC/INFO Geographic Informa-
tion System(GIS) marketed by the Environmental
Systems Research Institute, Inc. (ESRI). The soft-
ware systems include various data manipulation
procedures and pattern-recognition-oriented algor-
ithms. The hardware systems are IBM-486/25 gen-
eral purpose computers,

Data Preprocessing
Atmospheric Effects Correction. The “radiometric
rectification™ technique(Hall et al., 1991) was used
for this study to radiometrically rectify the 1985
subject image to the 1983 reference image. This
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correction procedure is relatively simple and useful
when reliable atmospheric optical depth data or
calibration coefficients are not available,

From the tests of this technique, Hall et al. (1991)
concluded that radiometric rectification performed
well, removing the effects of relative atmospheric
differences to within one percent absolute reflectan-
ce,

Image- to - Image Registration . lmage registration
was applied using the translation and rotation align-
ment process by which two images of like geometries
and of the same set of objects are positioned coinci-
dent with respect to one another so that correspond-
ing elements of the same ground area appear in the
same place on the registered images.

The 1985 image was registered using nearest
-neighbor interpolation to the 1988 image for the
further znalysis of change detection algorithms.

Geometric Rectification . The next step in the analy-
sis of these satellite-collected data sets was to rectify
the images to map coordinates. The Universal
Transverse Mercator (UTM; System was chosen as
the geographical reference system because ! its met-
ric system of coordinates fits nicely with the metric
pixel size of the Landsat data and the UTM coordi-
nate system of the USGS 7.5-minute topographic
maps usad : and, the task of analyzing the numerical
data was much easier to deal with on the computer
{Ness, 1988; .

Sampling Scheme

The 204 sample points randomly selected and well
-distributed {Jensen, 1986) were cross-checked with
aerial photography and some of them were ground
-truthed during the summer of 1991 (Ulliman, 1992} .
These cross-checked sample points were used for the
accuracy evaluation of the classified wetland cover
~type maps and the binary images representing
change and no-change in the analysis phase. Among
27 points(13.2%)
changes throughout the period of 1985 to 1988.

204 random points, revealed

Image Analysis
Since the primary objective of this study is to
determine wetland change patterns in the study
area, enhancement techniques were explored which
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would lead to change detection. Two image process-
ing methods were employed : Post-Classification
Comparison and Image Differencing .

However, thermal dataiTM band-6' for the two
dates were excluded for the study, since they may
lead to misinterpretation or spurious classification
unless considerable caution is exercised. Indiscrimi-
nate use of the thermal data as an adjunct to the
visible near-infrared data appears to be undesirable
because of many possibilities for misinterpretation
and the fact that the thermal “signature™ is not a
direct indicator or surface type(Price, 1981 .

Post -Classification Comparison. This is the most
obvious method of change detection which requires
the comparison of independently classified images.
By properly coding the classification results for 1985
and 1988,
matrix of changes, can be produced. In addition,

change maps, which show a complete
any subset of changes which may be of interest can
be observed by selective grouping of the classifica-
tion, Post-classification comparison holds promise
because data from two dates are separately classi-
fied, thereby minimizing the problem of normalizing
for atmospheric and sensor differences between the
two dates(Singh, 1989).

However, if the land cover classification generat-
ed from a single date of Landsat data is considered,
it is not difficult to see that the change map product
of two Landsat classifications is likely to exhibit
accuracies similar to the product of multiplying the
accuracies of each individual classification (Stow et
al., 1980} . Hence it can produce a large number of
erroneous change indications since an error on either
date gives a false indication of change. For exam-
ple, two images classified with 809 accuracy might
have only a 0.80x0.80x100=64% correct joint clas-
sification rate, Toll et al, (1980} noted that the poor
be
attributed to the “difficulty of producing comparable

performance of this approach may, in part,
classifications from one date to another”.

Image Differencing. In this techinque, spatially
registered images of time ¢ and ¢, are subtracted,
pixel by pixel and band by band, to produce a fur-
ther image which represents the change between the
two times, Mathematically,

Dx* = x*;(8) —x%,(4) +C
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where . x*;;=pixel value for band £ ; i and j are line
and pixel numbers in the image ; £, =first date ; &=
second date ; and, C=a constant, set equal to 112
for the study, to provide positive digital numbers,

The image differencing procedure, most widely
used technique for change detection, yields a differ-
ence distribution for each band. In such a distribu-
tion, pixels showing radiance change are found in
the tails of the distribution while pixels showing no
radiance change tend to be grouped around the mean
iSingh, 1989 .

A critical element of the image differencing
method is deciding where to place the threshold
boundaries between change and no-change pixels in
the histogram (Singh, 1989) . Often a standard devia-
tion from the mean is selected and tested empirically
to determine if changes were accurately monitored
{Jensen, 1986:. Fung and LeDrew (1988) examined
the effect of using different accuracy indices in
determining the optimal threshold levels for digital
land-cover change detection, They found that the
best accuracy index among five(0.8, 0.9, 1.0, 1.1,
and 1.2) was (.9 for a differenced image of MSS
band-4 between 1981 and 1984 images, and 1.0 and
1.1 for the ratioed or higher-order principal compo-
nent images,

Varied accuracy indices were examined in this
study for the image differencing change detection
techinque to decide where to place the threshold
boundaries between change and no-change pixels.
The histograms of differenced change data sets were
examined and the mean and standard deviation
values for each data set were calculated. Threshold
values of + T standard deviations from the mean

were iteratively selected to separate the change from
no-change pixels. The T value was chosen as 1.0 in
the first iteration. In the subsequent iterations, it
was increased or decreased with an interval of (0.1 at
each stage until a T value with highest accuracy for
the thresholded data set was found. The threshclded
images are binary images in which values of ¢ and 1

represent no-change and change, respectively .

Accuracy Assessment

The thresholded images produced by image differ-
encing at each iteration were verified with the refer-
ence sample data. Error matrices were produced and
analyzed. Table 1 illustrates a typical error matrix
generated from thresholding the D4 (differenced
image of TM band-4} at a T value of 1.0.

From the error matrix, the following accuracy
indices are generated

{1 The producer’s accuracy is the number of
correctly classified samples of a particular category
divided by the total number of reference samples for
that category. It is a measure of the error of omis-
sion{Story and Congalton, 1986}, The producer’s
accuracy for the change category is thus 13727 or 48.
1% (Table 1) .

i2) The user’s accuracy is the number of correctly
classified samples of a particular category divided by
the total number of samples being classified as that
category. It measures the error of commission. The
user’s accuracy for the change category is 1329 or
44 8% Table 1), which is a little lower than its
producer’s accuracy.

(3} The overall accuracy is the total number of
correctly classified samplesdiagonal elements in the

Table 1. Error Matrix of Differenced TM Band-4 Image(D4) Thresholded at 1.0 Standard Deviation from

Mean Threshold Level

Reference Data

No-change Change Total
Classified Data No-change 161 14 175
Change 16 13 29
Total 177 27 204
Producer’s accuracy 91.0 48.1
User’s accuracy 92.0 44.8
Average accuracy (producer’s) 69.6
Average accuracy (user’s) 68.4
QOverall accuracy 85.29
Kappa (x 100} 37.92
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matrix) divided by the total number of samples. It is
174/204 or 85.29% (Table 1) .

(4) The average accuracy is an average of the
accuracies in the individual categories. Becaese the
individual categories can be the user’s or the pro-
ducer’s accuracy, it can be computed in both ways
accordingly, The user’s and producer’s average accu-
racy are 68.4% and 69.6%, respectively.

‘5) The Kappa coefficient of agreement(K) is a
measure of the actual agreement(indicated by the
diagonal elements in the matrix) minus chance
agreement (indicated by the product of row and col-
umn marginals) . It uses all elements in the matrix

and takes into account both the commission and’

omissior: errors{Rosenfield and Fitzpatrick-Lins,
1986) .

the Kappa coefficient of agreement is computed
as .

N élx.f— i (X ® 20 )

R:

N2 S (1. %%,,)

=1

where, # is the number of rows in the error matrix,
x,; is the number of observations in row 7 and column
7ii.e., the diagonal elements}, + represents sum-
mation over the index, x. and x,, are thus the
marginal totals of row 7 and column 7, respectively,
and N is the total number of observations(Con-
galton, 1991). The Kappa value is 0.3792 for the D4
image ar the 1.0 threshold level (Table 1) .

(6) The test statistic for a significant difference

between two independent Kappas for different accu-

racy assessments(e.g., comparing the results of

different techniques) is :

R —R,
VIK)+ V(K

Z=

where V (R)) is the approximate large sample vari-
ance of K’l, and Z is the standard normal deviate
{Cohen, 1960) .

These accuracy indices are computed at each itera-
tion. Table 6 presents the changing pattern of these
indices as the threshold level changes at each 0.1

increment in thresholding the images.
RESULTS AND DISCUSSION

Post-Classification Comparison

A supervised classification approach was applied
to both the 1985 and 1988 images, independently.
Table 2 shows the classification scheme, the areal
extent of each wetland cover-type category, and
each change trend between the two dates in the study
area.

Two independently classified images presented
rather conspicuous differences in each category
between the two dates. Table 2 shows that there
were losses in forest types and agricultural land, and
increases in grassland, shrubland, and water cover,
possibly, due to floodings. Much concern is given to
the conversion of agricultural land to the grassland

Table 2. TM Data Classification Scheme, Areal Extent of Each Wetland Cover-Type, and Change Trend

between 1985 and 1988

Number of Hectares

Class 1985 1988 Trend

Water 468.09 596.97 +128.88
R3USI (Cobble/Gravel) 457 .02 227.61 —229.41
PEM1 (Emergent Grasses) 216.72 662.76 +446.04
Bare Soil 6.84 4.41 —2.43
MG (Riparian Grassiand) 788.85 1170.27 +381.42
MG (Agricultural) 1060.47 720.90 —339.57
Scrub/Shrub 188.19 390.33 +202.14
MFC (Cottonwoods} 1655.10 1124.37 —530.73
Other Hardwoods 70.20 9.99 —60.21
Conifers 17.73 21.60 +3.87
Total 4929 .21 4929.21 0.00
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and the shrubland.

The overall classification accuracies are 73.0%
and 73.5% for 1985 and 1988 images, respectively
(Table 3. For further accuracy comparison of the
two dates, producer’s accuracy, user's accuracy,

average accuracy, and Kappa coefficient of agree-

ment are shown in Table 3.

Both overall accuracies and Kappa values are
quite close between the two classified images and
they show no significant difference in classification
accuracy at the 95% probability level with a Z-statis-

351

tic of 0.2492. Major confusions in classification
occurred among scrub/shrub, grassland, and agri-
cultural land, while the Scrub/Shrub category in-
dicated the lowest average accuracy in both images.
The Cobble/Gravel (R3US1) category was classified
with the highest average accuracy in 1985, while the
Other Hardwoods categoty was the highest in 1988.

To estimate the correct joint classification rate
between the two dates for the change detection
analysis, the classified image of 1985 was subtracted
from that of 1988 and the differenced image was

Table 3. Error Matrix of Classified 1985 and 1988 TM Images and Their Accuracy Indices for 204 Random

Sample Points

1985 : Reference Data
Classified Data 1 2 3 4 5 6 7 8 9 10 Total
1. Water 11 1 3 1 1 1 18
2. R3US1 18 1 1 1 22
3. PEM1 6 6
4. Bare Soil 1 1 2
5. MG 1 29 2 3 35
6. MGf 9 33 2 1 1 1 47
7. Scrub/Shrub 2 4 6
3. Cottonwoods 7 6 6 43 2 64
9. Other Hardwoods 3 g
10. Conifers 1 ]
Total 12 19 19 2 47 35 17 45 6 2 204
Producer’s accuracy 92 95 32 50 62 94 24 96 30 50
User’s accuracy 82 100 50 83 70 67 67 100 100
Average accuracy 77 39 66 50 73 82 46 82 75 75
QOverall accuracy 73.04
Kappa (x 100) 67.55
1988 . Reference Data
Classified Data 1 2 3 4 5 6 7 8 9 10 Total
1. Water 10 6 2 1 3 22
2. R3US1 10 1 11
3. PEM1 6 16 1 1 2 26
4. Bare Soil 1 1
5. MG 37 3 2 1 1 44
6. MGf 2 24 4 30
7. Scrub/Shrub 3 10 3 19
8. Cottonwoods 1 2 2 1 2 36 1 45
9. Other Hardwoods 5 5
10. Conifers 1 1
Total 10 23 20 2 46 31 22 42 6 2 204
Producer’s accuracy 100 43 80 50 80 77 45 86 83 50
User's accuracy 45 91 62 100 84 80 53 80 100 100
Average accuracy 73 67 71 75 82 79 49 83 92 75
Overall accuracy 73.53
Kappa (x 100} 68.82

Refer to classification scheme in Table 2 for class symbols.
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Table 4, Error Matrix of Differenced Image between 1985 and 1988 Classification Maps
Reference Data
No-change Change Total
Classified Data No-change 105 12 117
Change 72 15 87
Total 177 27 204
Producer’s accuracy 59.3 55.6 -
User's accuracy 89.7 17.2
Average accuracy (producer’s) 57.5
Average accuracy {user’s) 53.5
Overall accuracy 58.82
Kappa(x 100} 7.66
recoded with a binary digit of 0(no-change) and Of the six differenced bands, the three infrared

1ichange’ {Table 4 .

The differenced binary image presented poor cor-
rect joint classification accuracies except for the no
-change category in user’s accuracy, and was
compared with other thresholded images produced
by the image differencing change detection technique

Table 97,

Image Differencing
The 1985 image was subtracted from the 1988
image and their six differenced images, one for each
band, wer

from the mean for the first iteration to delineate

e thresholded using 1.0 standard deviation

change and no-change pixels(Table 5) .

The three differenced visible bands(D1, D2, and
D3, provided lower accuracies compared with the
other three infrared bands. The D4 image indicated
the highest accuracy among six images at the 1.0
threshold level. Among various accuracy indices,
Kappa coefficient of agreement was used as the
standard measure for accuracy because all elements
in the error matrix are considered:Fung and Le-

Drew, 1988 .

bands showing higher accuracies were further
evaluated at the various threshold boundary levels
with an increment of 0.1. For the differenced band-4
image(Table 6/, a 1.0 standard deviation from the
mean revealed highest Kappa coefficient of

ment again,

agree-
As the 7T value increases(i.e., the threshold val-
ues are selected further away from the mean), the
user’s accuracy of the no-change category decreases.
In other words, the error of commission increases,
In contrast, the producer’s accuracy increases as the
error of omission approaches zero when nearly the
entire histogram is classified as no-change. Owing
to the fact that the thresholded data compose the
binary images, a reversed pattern is formed for the
change category. The user’s accuracy increases
while the producer’s accuracy decreases when the T
value increases.

This inverse relationship between the user's accu-
racy and the producer's accuracy of individual cate-
gories indicates the importance of considering both
For

instance, at a T value of 0.8, the producer’s accu-

accuracy indices(Story and Congalton, 1986 .

Table 5. The Accuracy Indices of the Six Differenced Ilmages Using 1.0 Standard Deviation from the Mean

As a Threshold Boundary Level

Differ. R Overall . Producer’§ User’s Av'erage ’
Image No-change Change No-change Change Producer's User's
D1 26.1 83.8 91.5 33.3 90.0 37.5 62.4 63.8
D2 27.1 84.3 92.1 33.3 90.1 39.1 62.7 64.6
D3 27.4 83.3 90.4 37.0 90.4 37.0 63.7 63.7
Di 39 8.3 91.0 18.1 9.0 44.8 69.6 68.4
D5 30.7 83.8 90.4 40.7 90.9 39.3 65.6 65.1
D7 37 84 91.0 0.7 91.0 0.7 65.9 65.9

I'nderlined items represent the higher three accuracies.
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Table 6. The Accuracy Indices of the Differenced Band-4 Image Using Five Different Threshold Boundary

Levels

Level 7 Producer’s User’s 7

(T K Overall No-change  Change No-change  Change Produc‘:‘:' :rage User’s
0.8 35.0 80.4 83.1 63.0 93.6 36.2 73.1 64.9
0.9 35.5 83.3 838.1 51.9 92.3 40.0 70.0 66.2
1.0 37.9 85.3 91.0 48.1 92.0 44.8 69.6 68.4
1.1 36.2 86.3 93.2 40.7 91.2 47.8 67.0 69.5
1.2 27.9 85.8 94.4 29.6 89.8 4.4 62.0 67.1

Underlined items represent the highest accuracy .

racy for the change category is 63.0% but the user’s
accuracy for this one is only 36.2%.

A similar inverse relationship also exists between
the same accuracy indices of the two categories,
While the producer’s accuracy at a 7 value of 1.2 is
94.4% for the no-change category, the same index
for the change category is less than 30% . These twa
inverse relationship should be borne in mind when
the accuracy indices of the other differenced images
are discussed.

The differenced images of TM bands 5 and 7 were
alsc further thresholded with various T values of 0.
1 incremerit, and a ].2 standard deviation from the
mean showed highest Kappa coefficient of agree-
ment in both images{Tables 7 and §) .

The five accuracy indices, namely Kappa, overall

accuracy, producer’s accuracy, user's accuracy, and
average accuracy(both producer’s and user’s
As the T value
increases, most of the accuracy indices also increase

exhibit a common property.

towards a maximum at a certain threshold level,
after which they then decrease. In both images, D5
and D7, the average user’s accuracy tended to gener-
ate the highest accuracy at a larger threshold level.

Because only the Kappa can take into account all
of the elements in the error matrices, the optimum
threshold levels are thus selected based on the high-
est Kappas of the thresholded images. The diifer-
ences among the three thresholded infrared-band
images are now compared with the post-classifica-
tion comparison change detection approach.

Table 7. The Accuracy Indices of the Differenced Band-5 Image Using Five Different Threshold Boundary

Levels

Lev¢1 R Overall . Producer’s User’s A\terage

T No-change Change  No-change  Change Producer’s User's
0.9 28.7 82.8 89.3 40.7 90.8 36.7 65.0 63.8
1.0 30.7 83.8 90.4 40.7 90.9 39.3 65.6 65.1
1.1 32.8 84.8 91.5 40.7 91.0 42.3 66.1 66.7
1.2 38.7 87.3 94 .4 40.7 91.3 52.4 67.6 71.9
1.3 31.6 87.3 96.0 29.6 89.9 53.3 62.8 71.6

Underlined items represent the highest accuracy.

Table 8. The Accuracy Indices of the Differenced Band-7 Image Using Five Different Threshold Boundary

Levels
Levgl R Overall Producer’s ) User’s Ax:erage ,
(T No-change Change No-change Change Producer’s User's
1.0 31.7 84.3 91.0 40.7 91.0 40.7 65.9 65.9
1.1 32.8 85.8 93.2 37.0 90.7 45.5 65.1 68.1
1.2 39.2 882 96.0 37.0 90.9 58.8 66.5 74.9
1.3 35.5 87.7 96.0 33.3 90.4 56.2 64.7 73.3
1.4 344 882 97.2 296 90.1 61.5 63.4 75.8

Underlined items represent the highest accuracy.
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Table 9. The Comparison of Accuracy Indices Among the Best Four Differenced Images

Producer’s User's Average
Image R Overall No-change Change No-change Change  Producer’s ¢ User’s
D4(1.0) 37.9 85.3 91.0 48.1 92.0 44 .8 69.6 68.4
D5(1.2) 38.7 87.3 94 .4 40.7 91.3 52.4 67.6 71.9
D71.2 39.2 88.2 96.0 37.0 90.9 58.8 66.5 4.9
PC-COMP 7.7 58.8 59.3 5.6 89.7 17.2 57.5 53.5

Parenthesis represents the threshold boundary level

PC-COMP represents the post-classification comparison technique.

Underlined items represent the highest accuracy.

Table 10. The Results of Test of Agreement between Error Matrices Produced from One Differenced and
Three Thresholded Images, Based on the Highest Kappa Values at the 95% Probability Level

Z-Statistic

D7(1.2) PC-COMP D5(1.2)

D4(1.0) -0.0981 -2.8513 -0.0617
‘NS) ) (NS)

D7(1.2) -2.7975 -0.0362
(S) (NS)

PC-COMP -2 8062
(S)

NS—not significant.
S —significant,
Zu.ozs =1.96.

Comparison Among the Images

Table 9 illustrates the comparison among the four
change images with different accuracy indices.

An important thing to notice is the threshold level
where the images reached highest accuracy, espe-
cially in the differenced band-7 image, where a T of
1.2 indicated the highest kappa value among all
thresholded images, while the band-4 differenced
image showed highest accuracy at the 1.0 threshold
boundary level (Tavle 5) .

To examine the differences among error matrices
produced from the thresholded images and a differen-
ced image of the two classification maps, pairwise
significance testing of Kappas’ test statistics were
performed (Table 10) .

As shown in Table 10, PC-COMP is significantly
different from the other three images at the 95%
probability level. It has the lowest Kappa value of 0.
0766 (Table 9) . The three thresholded infrared-band
images have no significant difference in terms of the
accuracy of classification with 0(no-change) and
1(change). Their Kappa values range from 0.
3792(D4) to 0.3924(D7) (Table 9).

However, it should be noted that each image may

consist of different information content despite their
differences or similarities in accuracy . While there is
no significant difference in terms of the accuracy of
the two error matrices of D4(1.0) and D7(1.2), the
wetland cover-type changes they reveal may be
different .

CONCLUSION

For this study, two general classes of change
detection techniques, including post-classification
comparison and image differencing, were evaluated
to detect wetland cover-type change in the Jackson
Hole, Wyoming area between 1985 and 1983 using
Landsat-5 TM imagery. It was revealed that the
three differenced infrared-band images were more
appropriate for wetland change detection than the
three visible-band images in the study area. Also we
examined the use of different accuracy indices to
determine optimal threshold levels for change detec-
tion images. Differenced band-7 image represented
highest accuracy with a 1.2 standard deviation from
the mean as a threshold boundary level.

While significance testing may provide valuable
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information concerning the differences in accuracies

between the error matrices produced from different

images, it is also important tc scrutinize the ability

of each image to detect specific wetland-cover

changes.
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