• Title/Summary/Keyword: Post-bond test

Search Result 138, Processing Time 0.028 seconds

Effect of dentin biomodifiers on the immediate and long-term bond strengths of a simplified etch and rinse adhesive to dentin

  • Singh, Payal;Nagpal, Rajni;Singh, Udai Pratap
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.3
    • /
    • pp.188-199
    • /
    • 2017
  • Objectives: This in vitro study evaluated the effect of dentin biomodifiers on the immediate and long-term bond strengths of a simplified etch and rinse adhesive to dentin. Materials and Methods: Flat coronal dentin surfaces were prepared in 120 extracted human molars. Teeth were randomly divided into 5 groups (n = 24) according to 5 different surface pre-treatments: No pre-treatment (control); 1M carbodiimide (EDC); 0.1% epigallocatechin-3-gallate (EGCG); 2% minocycline (MI); 10% sodium ascorbate (SA). After surface pre-treatment, adhesive (Adper Single Bond 2 [SB], 3M ESPE) was applied. Composite was applied into transparent plastic tubes (2.5 mm in diameter), which was placed over the bonded dentin surface. From each group, 10 samples were subjected to shear bond strength (SBS) evaluation at 24 hours (immediate) and remaining 10 samples were tested after 6 months (delayed). Additionally, 4 samples per group were subjected to scanning electron microscopic analysis for observation of resin-dentin interface. The data were statistically analysed with Shaperio-Wilk W test, 2-way analysis of variance (ANOVA), and post hoc Tukey's test. Results: At 24 hours, SBS of all surface pre-treatment groups were comparable with the control group, with significant differences found between EDC and SA groups only (p = 0.009). After 6 months storage, EDC, EGCG, and MI pre-treatments preserved the resindentin bond strength with no significant fall. Conclusions: Dentin pre-treatment with all the dentin biomodifiers except SA resulted in significant preservation of resin-dentin bond over 6 months storage period, without negatively affecting the immediate bond strength of the etch and rinse adhesive tested.

Effect of various intraoral repair systems on the shear bond strength of composite resin to zirconia

  • Han, In-Hae;Kang, Dong-Wan;Chung, Chae-Heon;Choe, Han-Cheol;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.248-255
    • /
    • 2013
  • PURPOSE. This study compared the effect of three intraoral repair systems on the bond strength between composite resin and zirconia core. MATERIALS AND METHODS. Thirty zirconia specimens were divided into three groups according to the repair method: Group I-CoJet$^{TM}$ Repair System (3M ESPE) [chairside silica coating with $30{\mu}m$ $SiO_2$ + silanization + adhesive]; Group II-Ceramic Repair System (Ivoclar Vivadent) [etching with 37% phosphoric acid + Zirconia primer + adhesive]; Group III-Signum Zirconia Bond (Heraus) [Signum Zirconia Bond I + Signum Zirconia Bond II]. Composite resin was polymerized on each conditioned specimen. The shear bond strength was tested using a universal testing machine, and fracture sites were examined with FE-SEM. Surface morphology and wettability after surface treatments were examined additionally. The data of bond strengths were statistically analyzed with one-way ANOVA and Tamhane post hoc test (${\alpha}$=.05). RESULTS. Increased surface roughness and the highest wettability value were observed in the CoJet sand treated specimens. The specimens treated with 37% phosphoric acid and Signum Zirconia Bond I did not show any improvement of surface irregularity, and the lowest wettability value were found in 37% phosphoric acid treated specimens. There was no significant difference in the bond strengths between Group I ($7.80{\pm}0.76$ MPa) and III ($8.98{\pm}1.39$ MPa). Group II ($3.21{\pm}0.78$ MPa) showed a significant difference from other groups (P<.05). CONCLUSION. The use of Intraoral silica coating system and the application of Signum Zirconia Bond are effective for increasing the bond strength of composite resin to zirconia.

PEKK(Polyetherketoneketone) Surface Treatment Effects on Shear Bond Strength to Dental Veneering Resin (PEKK(Polyetherketoneketone) 표면처리가 치과용 베니어 레진의 전단결합강도에 미치는 영향)

  • Moon, Yun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.93-99
    • /
    • 2019
  • The purpose of this study was to investigate the bond strength between PEKK(Polyetherketoneketone) and Sinfony(3M ESPE, Seefeld, Germany) the dental composite resin by proposing the three representative surface treatment methods and evaluate to see if they affect the bond strength between two materials. A total of 30 PEKK($Pekkton^{(R)}$ Ivory, $Cendres+M{\acute{e}}taux$, Bienne, Switzerland) specimens were prepared, embedded in acrylic resin, polished(P 1200 grid) to surface, and each group was divided into 10 specimens. After then, by the surface treatment method, it classified into three groups(n=10) such as Air abrasion group(PN), applying Single Bond Universal(3M ESPE) after Air abrasion(PB), applying OPAQUE(3M ESPE) after Air abrasion(PO). Then, veneering was performed by using Sinfony(3M ESPE, Seefeld, Germany). All completed specimens were allowed to rest in a $37^{\circ}C$ water bath for 24 hours. Shear bond strength of each group was measured and fracture patterns were classified. Statistic analysis was performed with One-way ANOVA followed by post hoc Scheffe tast (p<.05). Statistical analysis was performed using the SPSSWIN 21.0 program. As a result of one-way ANOVA, the average value of PB group was $27.67{\pm}4,18MPa$ and it was shown as the highest bond strength, PN and PO were $20.43{\pm}1.70$ and $19.8{\pm}4.77MPa$ each, and these were relatively low(F=18.4, P<.001), and as the post-test the Scheffe test was conducted and verified (p<.05). After examining the scheffe test, it was showed significant differences as PB>PO, PB>PN(p<.001). Through this study, in order to enhance the bonding force between PEKK and the composite resin, perform the Air abrasion and surface treatment by using Single Bond Universal(3M ESPE) is recommended, and as coMPared with other studies. And it is assumed that the increase of the application time of the Air abrasion affects the increase of the shear bond strength. Thus, further research is required.

The effect of sandblasting duration on the bond durability of dual-cure adhesive cement to CAD/CAM resin restoratives

  • Tekce, Neslihan;Tuncer, Safa;Demirci, Mustafa
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.211-217
    • /
    • 2018
  • PURPOSE. To evaluate the effect of prolonged sandblasting on the bond durability of dual-cure adhesive resin cement to computer-aided design and computer-aided manufacturing (CAD/CAM) restoratives. MATERIALS AND METHODS. Nano-ceramic LAVA Ultimate and hybrid-ceramic VITA Enamic CAD/CAM blocks were used for this study. Each CAD/CAM block was sectioned into slabs of 4-mm thickness for the microtensile test (${\mu}TBS$) test and 2-mm thickness for the surface roughness test. Three groups were created according to the sandblasting protocols; group 1: specimens were sandblasted for 15 seconds, group 2: specimens were sandblasted for 30 seconds, and group 3: specimens were sandblasted for 60 seconds. After sandblasting, all specimens were luted using RelyX Ultimate Clicker. Half the specimens were subjected to ${\mu}TBS$ tests at 24 hours, and the other half were subjected to tests after 5000 thermocycles. Additionally, a total of 96 CAD/CAM block sections were prepared for surface roughness tests and scanning electron microscopy (SEM) evaluations. The Mann-Whitney U test, Kruskal-Wallis one-way analysis of variance, and Dunn's post hoc test were used to compare continuous variables among the groups. RESULTS. At baseline, group 1, group 2, and group 3 exhibited statistically similar ${\mu}TBS$ results for LAVA. However, group 3 had significantly lower ${\mu}TBS$ values than groups 1 and 2 for VITA. After 5000 thermocycles, ${\mu}TBS$ values significantly decreased for each block (P<.05). CONCLUSION. It is important to perform controlled sandblasting because it may affect bond strength results. Sixty seconds of sandblasting disturbs the initial ${\mu}TBS$ values and the stability of adhesion of CAD/CAM restoratives to dual-cure adhesive resin cement for VITA Enamic.

Effects of applying antioxidants on bond strength of bleached bovine dentin

  • Whang, Hyo-Jin;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • Objectives: Some antioxidants are believed to restore dentin bond strength after dental bleaching. This study was done to evaluate the influence of antioxidants on the bond strength of bleached bovine dentin. Materials and Methods: Thirty incisors were randomly assigned to 10 groups (two unbleached control and eight bleached groups:immediate bonding IB, 4 wk delayed bonding DB, 10% sodium ascorbate treated SA, 10% ${\alpha}$-tocopherol treated TP groups). Teeth in half of groups were subjected to thermal stress, whereas the remaining groups were not. Resin-dentin rods with a cross-sectional area of $2.25mm^2$ were obtained and microtensile bond strength was determined at a crosshead speed of 1 mm/min. Fifteen specimens were prepared for SEM to compare the surface characteristics of each group. The change in dentin bond strength from thermal stress and antioxidant treatment was evaluated using two-way analysis of variance (ANOVA) and Sheffe's post hoc test at a significance level of 95%. Results: The control group exhibited the highest bond strength values, whereas IB group showed the lowest value before and after thermocycling. The DB group recovered its bond strength similar to that of the control group. The SA and TP groups exhibited similar bond strength values with those of the control and DB groups before thermocycling. However, The TP group did not maintain bond strength with thermal stress, whereas the SA group did. Conclusions: Applying a 10% sodium ascorbate solution rather than 10% ${\alpha}$-tocopherol solution for 60 sec is recommended to maintain dentin bond strength when restoring non-vitally bleached teeth.

An Experimental Study on the Flexural Cracking Behavior of Partially Prestressed Concrete Slabs (부분 프리스트레스트 콘크리트 슬래브의 휨 균열 거동에 관한 실험적 연구)

  • 박홍용;연준희;최익창
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.108-115
    • /
    • 1990
  • This paper contains experimental studies on the flexural cracking behabior of PPC one-way slabs. Three post tensioned bonded PPC slabs with the same prestressing ratio and ultimate moment strength were tested. Based upon test results, this paper also presents the crack width prediction formula PPC slab. According to the crack theory developed mainly in Europe, crack width formula is given as the product of crack spacing and mean steel strain after decompression. Aaaaverage crack spacing formula is composed of many factors mainly such as concrete cover, concrete effective area in tension, sum of reinforcing bars perimeters and mixed reinforcements. In particular, it is very important to specify the bond characteristics of mixed reinforcements, since bond characteristics of PC bars are different from those of non-tensioned deformed bars. For this reason, a reduced bond coefficients for PS bars is employed in this study.

  • PDF

Influence of cement thickness on resin-zirconia microtensile bond strength

  • Lee, Tae-Hoon;Ahn, Jin-Soo;Shim, June-Sung;Han, Chong-Hyun;Kim, Sun-Jai
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.3
    • /
    • pp.119-125
    • /
    • 2011
  • PURPOSE. The aim of this study was to evaluate the influence of resin cement thickness on the microtensile bond strength between zirconium-oxide ceramic and resin cement. MATERIALS AND METHODS. Thirty-two freshly extracted molars were transversely sectioned at the deep dentin level and bonded to air-abraded zirconium oxide ceramic disks. The specimens were divided into 8 groups based on the experimental conditions (cement type: Rely X UniCem or Panavia F 2.0, cement thickness: 40 or 160 ${\mu}m$, storage: thermocycled or not). They were cut into microbeams and stored in $37^{\circ}C$ distilled water for 24 h. Microbeams of non-thermocycled specimens were submitted to a microtensile test, whereas those of thermocycled groups were thermally cycled for 18,000 times immediately before the microtensile test. Three-way ANOVA and Sheffe's post hoc tests were used for statistical analysis (${\alpha}$=95%). RESULTS. All failures occurred at the resin-zirconia interface. Thermocycled groups showed lower microtensile bond strength than non-thermocycled groups (P<.001). Differences in cement thickness did not influence the resin-zirconia microtensile bond strength given the same resin cement or storage conditions (P>.05). The number of adhesive failures increased after thermocycling in all experimental conditions. No cohesive failure was observed in any experimental group. CONCLUSION. When resin cements of adhesive monomers are applied over air-abraded zirconia restorations, the degree of fit does not influence the resin-zirconia microtensile bond strength.

The push-out bond strength of BIOfactor mineral trioxide aggregate, a novel root repair material

  • Akbulut, Makbule Bilge;Bozkurt, Durmus Alperen;Terlemez, Arslan;Akman, Melek
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.1
    • /
    • pp.5.1-5.9
    • /
    • 2019
  • Objectives: The aim of this in vitro study was to evaluate the push-out bond strength of a novel calcium silicate-based root repair material-BIOfactor MTA to root canal dentin in comparison with white MTA-Angelus (Angelus) and Biodentine (Septodont). Materials and Methods: The coronal parts of 12 central incisors were removed and the roots were embedded in acrylic resin blocks. Midroot dentin of each sample was horizontally sectioned into 1.1 mm slices and 3 slices were obtained from each root. Three canal-like standardized holes having 1 mm in diameter were created parallel to the root canal on each dentin slice with a diamond bur. The holes were filled with MTA-Angelus, Biodentine, or BIOfactor MTA. Wet gauze was placed over the specimens and samples were stored in an incubator at $37^{\circ}C$ for 7 days to allow complete setting. Then samples were subjected to the push-out test method using a universal test machine with the loading speed of 1 mm/min. Data was statistically analyzed using Friedman test and post hoc Wilcoxon signed rank test with Bonferroni correction. Results: There were no significant differences among the push-out bond strength values of MTA-Angelus, Biodentine, and BIOfactor MTA (p > 0.017). Most of the specimens exhibited cohesive failure in all groups, with the highest rate found in Biodentine group. Conclusions: Based on the results of this study, MTA-Angelus, Biodentine, and BIOfactor MTA showed similar resistances to the push-out testing.

Effects of endodontic tri-antibiotic paste on bond strengths of dentin adhesives to coronal dentin

  • Mirzakoucheki, Parvin;Walter, Ricardo;Khalighinejad, Navid;Jahromi, Maryam Zare;Mirsattari, Sanaz;Akbarzadeh, Navid
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.2
    • /
    • pp.136-142
    • /
    • 2015
  • Objectives: The aim of this study was to evaluate the effects of tri-antibiotic paste (TAP) on microtensile bond strengths (MTBS) of dental adhesives to dentin. Materials and Methods: Sixty extracted molars had their occlusal surfaces flattened to expose dentin. They were divided into two groups, i.e., control group with no dentin treatment and experimental group with dentin treatment with TAP. After 10 days, specimens were bonded using self-etch (Filtek P90 adhesive) or etch-and-rinse (Adper Single Bond Plus) adhesives and restored with composite resin. Teeth were sectioned into beams, and the specimens were subjected to MTBS test. Data were analyzed using two-way ANOVA and post hoc Tukey tests. Results: There was a statistically significant interaction between dentin treatment and adhesive on MTBS to coronal dentin (p = 0.003). Despite a trend towards worse MTBS being noticed in the experimental groups, TAP application showed no significant effect on MTBS (p = 0.064). Conclusions: The etch-and-rinse adhesive Adper Single Bond Plus presented higher mean bond strengths than the self-etch adhesive Filtek P90, irrespective of the group. The superior bond performance for Adper Single Bond when compared to Filtek P90 adhesive was confirmed by a fewer number of adhesive failures. The influence of TAP in bond strength is insignificant.

Effects of a relined fiberglass post with conventional and self-adhesive resin cement

  • Wilton Lima dos Santos Junior;Marina Rodrigues Santi;Rodrigo Barros Esteves Lins;Luis Roberto Marcondes Martins
    • Restorative Dentistry and Endodontics
    • /
    • v.49 no.2
    • /
    • pp.18.1-18.13
    • /
    • 2024
  • Objectives: This study was conducted to evaluate the mechanical properties of relined and non-relined fiberglass posts when cemented to root canal dentin using a conventional dual-cure resin cement or a self-adhesive resin cement. Materials and Methods: Two types of resin cements were utilized: conventional and self-adhesive. Additionally, 2 cementation protocols were employed, involving relined and non-relined fiberglass posts. In total, 72 bovine incisors were cemented and subjected to push-out bond strength testing (n = 10) followed by failure mode analysis. The cross-sectional microhardness (n = 5) was assessed along the root canal, and interface analyses (n = 3) were conducted using scanning electron microscopy (SEM). Data from the push-out bond strength and cross-sectional microhardness tests were analyzed via 3-way analysis of variance and the Bonferroni post-hoc test (α= 0.05). Results: For non-relined fiberglass posts, conventional resin cement exhibited higher pushout bond strength than self-adhesive cement. Relined fiberglass posts yielded comparable results between the resin cements. Type II failure was the most common failure mode for both resin cements, regardless of cementation protocol. The use of relined fiberglass posts improved the cross-sectional microhardness values for both cements. SEM images revealed voids and bubbles in the incisors with non-relined fiberglass posts. Conclusions: Mechanical properties were impacted by the cementation protocol. Relined fiberglass posts presented the highest push-out bond strength and cross-sectional microhardness values, regardless of the resin cement used (conventional dual-cure or self-adhesive). Conversely, for non-relined fiberglass posts, the conventional dual-cure resin cement yielded superior results to the self-adhesive resin cement.