• Title/Summary/Keyword: Post-LOCA

Search Result 22, Processing Time 0.027 seconds

Evaluation of Post-LOCA Long Term Cooling Performance in Korean Standard Nuclear Power Plants

  • Bang, Young-Seok;Jung, Jae-Won;Seul, Kwang-Won;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.12-24
    • /
    • 2001
  • The post-LOCA long term cooling (LTC) performance of the Korean Standard Nuclear Power Plant (KSNPP) is analyzed for both small break loss-of-coolant accidents (LOCA) and large break LOCA at cold leg. The RELAP5/MOD3.2.2 beta code is used to calculate the LTC sequences based on the LTC plan of the Korean Standard Nuclear Power Plants (KSNPP). A standard input model is developed such that LOCA and the followed LTC sequence can be calculated in a single run for both small break LOCA and large break LOCA. A spectrum of small break LOCA ranging from \ulcorner.02 to 0.5 k2 of break area and a double-ended guillotine break are analyzed. Through the code calculations, the thermal-hydraulic behavior and the boron behavior are evaluated and the effect of the important action including the safety injection tank (SIT isolation and the simultaneous injection in LTC procedure is investigated. As a result, it is found that the sufficient margin is available in avoiding the boron precipitation in the core. It is also found that a further specific condition for the SIT isolation action need to be setup and it is recommended that the early initiation of the simultaneous injection be taken for larger break LTC sequences.

  • PDF

Determination of Hot Leg Recirculation Switchover Time to Prevent Boron Precipitation during Post-LOCA LTC for ULCHIN l&2

  • Park, Han-Rim;Ban, Chang-Hwan;Jeong, Jae-Hoon;Hwang, Sun-Tack;Chang, Byong-Hoon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.328-333
    • /
    • 1996
  • Boric acid concentrations of the refueling water storage tank (RWST) and the accumulators for Ulchin 1&2 (UCN 1&2) are increased to meet the post loss of coolant accident (post-LOCA) shutdown requirement for the extended fuel cycles from 12 months to 18 months. To maintain long term cooling (LTC) capability following a LOCA, the switchover tine is examined using BORON code to prevent the boron precipitation in the reactor core with the increased boron concentrations. The analysis results show that, at 8 hours after the initiation of LOCA. the emergency core noting system (ECCS) should be manually realigned to the simultaneous recirculation mode from the cold leg recirculation mode.

  • PDF

Assessment of Post-LOCA Radiation Fields in Service Building Areas for Wolsong 2, 3, and 4 Nuclear Power Plants (월성 원자력 발전소 2,3,4호기에서의 LOCA 사고후 보조건물의 방사선장 평가)

  • Jin, Yung-Kwon;Kim, Yong-Il
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.1
    • /
    • pp.53-64
    • /
    • 1995
  • The radiation fields following the large loss of coolant accident (LOCA) have been assessed for the vital areas in the service building of Wolsong 2, 3, and 4 nuclear power plants. The ORIGEN2 code was used in calculating the fission product inventories in the fuel. The source terms were based upon the activity released following the dual failure accident scenario, i.e., a LOCA followed by impaired emergency core cooling (ECC). Configurations of the reactor building, the service building, and the ECC system were constructed for the QAD-CG calculations. The dose rates and the time-integrated doses were calculated for the time period of upto 90 days after the accident. The results showed that the radiation fields in the vital access areas were found to be sufficiently low. Some areas however showed relatively high radiation fields that may require limited access.

  • PDF

Establishment of the Procedure to Prevent Boron Precipitation During Post-LOCA Long Term Cooling for WH 3-Loop NPPs

  • Cho, H.R.;Lee, S.K.;Ban, C.H.;Hwang, S.T.;Chang, B.H.
    • Nuclear Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.47-57
    • /
    • 1998
  • Boric acid concentrations of the refueling water storage tank and the accumulators for Westinghouse 3-loop type plants are increased to meet the post loss of coolant accident shutdown requirement for the extended fuel cycles from 12 months to 18 months. To maintain long term cooling capability following a LOCA, the switchover time is examined using BORON code to prevent the boron precipitation in the reactor core with the increased boron concentrations. The analysis results show that hot leg recirculation switchover times are shortened to 7.5 hours from 24 hours after the initiation of LOCA for Kori 3&4 and 8 hours from 18 hours for Ulchin 1&2, respectively. The How path in the mode J for Kori 3&4 is recommended to realign to the simultaneous recirculation of both hot and cold legs from the cold leg recirculation, as done by Ulchin 1&2.

  • PDF

An Experimental Study on the Mass and Energy Release for a Hot Leg Break LBLOCA During Post Blowdown

  • S.J. Hong;Kim, J.H.;Park, G.C.
    • Nuclear Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.108-127
    • /
    • 2000
  • Hot leg break LBLOCA(Large Break LOCA) had a potential to be a containment maximum pressure accident in YGN3&4, which was induced from excessive conservatism in the CE analysis methodology of mass and energy release. This study conducted mass and energy release experiment for the hot leg break LBLOCA during post blowdown with an integral test facility, SNUF(Seoul National University Facility). This facility simulated YGN 3&4 with volume ratio of 1/1140 based on Ishii's three level scaling. Experiment showed that SI(Safety Injection) water refilled cold leg first and core later. SI water was vaporized in the core, which resulted in the repressurization of reactor. This increase of pressure drove the water in cold leg to flow up half height of U tubes. However, since the water was drained back soon, the release through the SG side broken section by evaporation was negligibly small. This study also provided experimental assessment of RELAP5 results by KAERI for the release through the SG side broken section.

  • PDF

Realistic toch Containment Analysis Using A Merged Version of RELAP5/CONTEMPT4

  • Kwon, Young-Min;Lee, Ki-Young;Song, Jin-Ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.447-452
    • /
    • 1996
  • Realistic containment analyses for large LOCA using a merged torsion of RELAP5/CONTEMPT4 are conducted. Analyzed are Generic LOCA with respect to the mass and energy releases from the RCS and containment pressure and temperature behaviors. The break locations considered are the double-ended guillotine breaks at the RCP discharge and hot legs for UCN 3&4 plants. For discharge leg break. the predicted containment pressure and temperature reach a peak during blowdown phase, thereafter the pressure and temperature decrease gradually without the second reflood peak. For the hot leg break it is found that the bypass break flow through the broken steam generator-during post-blowdown is negligibly small so that the containment atmosphere is not pressurized after the end of blowdown.

  • PDF

Axial strength of Zircaloy-4 samples with reduced thickness after a simulated loss of coolant accident

  • Desquines, Jean;Taurines, Tatiana
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2295-2303
    • /
    • 2021
  • To investigate wall-thinning impact on axial load resistance of Zircaloy-4 cladding rods after a LOCA transient, axial tensile samples have been machined on as-received tubes with reduced thicknesses between 370 and 580 ㎛. After high temperature oxidation under steam at 1200 ℃ with measured ECR ranging from 10 to 18% and water quenching, machined samples were axially loaded until fracture. These tests were modeled using a fracture mechanics approach developed in a previous study. Fracture stresses are rather well predicted. However, the slightly lower fracture stress observed for wall-thinned samples is not anticipated by this modeling approach. The results from this study confirm that characterizing the axial load resistance using semi-integral tests including the creep and burst phases was the best option to obtain accurate axial strengths describing accurately the influence of wall-thinning at burst region.