• Title/Summary/Keyword: Post-Heat treatment

Search Result 454, Processing Time 0.033 seconds

Control techniques of transformer - SCR power regulator for heater temperature control (히터온도 제어용 변압기-SCR 전력변환장치 제어 기법)

  • Huynh, Anh-Tuan;Chun, Tae-Won;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.265-266
    • /
    • 2019
  • This paper proposed a three-channel transformer-type power regulator to control the heater temperature by adjusting the voltage across the heater for pre-heating and the post-heating procedures of the material welding. The experimental results are carried out to verify the performance of three-channel heater temperature control for the heat treatment.

  • PDF

Study on PWHT embrittlement of weld HAZ in Cr-Mo steel (Cr-Mo 鋼 溶接熱影響部의 溶接後熱處理 脆化에 관한 硏究)

  • 임재규;정세희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.314-321
    • /
    • 1987
  • Post weld heat treatment (PWHT) of weldment of the low alloy Cr-Mo steel, in general, is carried out not only to remove residual stress and hydrogen existing in weldment but to improve fracture toughness of weld heat affected zone (HAZ). There occur some problems such as toughness decrement and stress relief cracking (SRC) in the coarse grained region of weld HAZ when PWHT is practiced. Especially, embrittlement of structure directly relates to the mode of fracture and is appeared as the difference of fracture surface such as grain boundary failure. Therefore, in this paper, the effect of heating rate on PWHT embrittlement under the various kinds of stresses simulated residual stress in weld HAZ was evaluated by COD fracture toughness test and observation of fracture surface. Fracture toughness of weld HAZ decreased with increment of heating rate under no stress, but it was improved to increment of heating rate under the stress. Grain boundary failure didn't almost appear at the heating rate of 600.deg.C/hr but it appeared from being the applied stress of 294 MPa at 220.deg.C/hr and 196 MPa at 60.deg.C/hr.

Immersion Corrosion Characteristic of SUS420J2 Steel with a Material for Fish Pre-Processing Machinery (어류 전처리 가공기계용 재료 SUS420J2강의 침지부식 특성)

  • 김선진;안석환;최대검;정현철;김상수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.1
    • /
    • pp.79-88
    • /
    • 2002
  • 13%Cr martensitic stainless steel has been used mainly with a material for fish pre-processing machinery. However, it has not very nice cutting section because of little of the carbon content. Therefore, SUS420J2 steel that contents 0.3%C with high-strength in spite of the rust is used with a material for fish pre-processing machinery. However, studies on the corrosion characteristics of SUS420J2 steel are relatively rare. Especially, the corrosion phenomenon may cause serious degradation because the fish pre-processing machinery is exposed always to seawater environment. In this paper, the immersion corrosion test was carried out at seawater environment (pH=7.52) on SUS420J2 steel specimens that have various post-treatment conditions and its corrosion characteristics were evaluated. From test results, the specimens such as base metal, vacuum heat treatment, electrolytic polishing and tempering after quenching tend somewhat sensitive from the corrosion. In the case of vacuum heat treatment specimen of continuous immersion during 360 days, the weight loss ratio was high about seven times when compared with the different specimens. On the contrary, SUS420J2 steel specimen that has the heat treatment of tempering after quenching and the electrolytic polishing was less sensitive from the corrosion, and the weight loss ratio was very low.

A Study of Mechanical Property Enhancement of Polymer Nanostructure using IPL Treatment (IPL 처리를 통한 고분자 나노구조의 기계적 특성 향상 연구)

  • Kim, D.;Kim, D.I.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.113-117
    • /
    • 2020
  • In this paper, We investigated the effect of heat treatment process using photo-thermal effect in order to improve mechanical properties of nanostructure on polymer films made by nanoimprint process with hybrid resin. Nanostructures which have a low refractive characteristic were fabricated by UV nanoimprint and after that heat treatment was performed using IPL (intense pulsed light) under process condition of 550 V voltage, pulse width 5 ms, frequency 0.5 Hz. The transmittance and mechanical property of fabricated nanostructure films were evaluated to observe changes in the pattern transfer rate and mechanical properties of nanostructures. The transmittance of the nanostructure was measured at 97.6% at 550 nm wavelength. Nanoindentation was performed to identify improved anti-scatch properties. Result was compared by the heat source. In case of post treatment with IPL, hardness was 0.51 GPa and in the case of hotplate was 0.27 GPa, resulting the increase of hardness of 1.8 times. Elastic modulus of IPL treated sample was 5.9GPa and Hotplate treated one was 4GPa, showing the 1.4 time increase.

Failure of Ammonia Synthesis Converter Due to Hydrogen Attack and Its On-Stream Assessment Using ToFD Method

  • Albiruni, Farabirazy;Lee, Joon-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.132-137
    • /
    • 2008
  • A failure analysis of ammonia converter which suffered hydrogen attack in two years since its initial operating time was presented. It is constructed from 2.25 Cr.1 Mo steel. Analysis showed that the failure on closing seam weld joint was due to local improper post weld heat treatment (PWHT). Improper PWHT can introduce high residual stresses in thick-walled pressure vessel. High residual stress level in weld joint is very prone to hydrogen attack for any components which are operating in hydrogen gas environment. The repair procedures based on the principle to decrease the residual stress then proposed. The repair was controlled very carefully by applying several nondestructive tests in the each stage of repair. To assure the successful of the proposed repair, after one year since repair time, high temperature ultrasonic and TOFD methods were applied on-stream to this equipment in order to evaluate its post repair condition. The two methods showed good results on the repaired area.

  • PDF

Effect of Hot Water Treatment on Storage Quality of Minimally Processed Onion (열수처리가 신선 편의가공 양파의 저장품질에 미치는 효과)

  • Hong, Seok-In;Lee, Hyun-Hee;Son, Seok-Min;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.239-245
    • /
    • 2004
  • Storage quality of minimally processed onion as influenced by hot-water dipping was investigated to examine feasibility of mild heat treatment as efficient post-processing method. fresh onions were peeled, trimmed, and dipped in hot water at various temperatures ($50-80^{\circ}C$) for 1 min. Heat-treated onions were cooled, de-watered, packaged in low density polyethylene (LDPE) film pouches ($63\;{\mu}m\;thickness$), and stored at $10^{\circ}C$. Samples treated at higher temperatures ($70-80^{\circ}C$) showed significant increases in flesh weight loss and discoloration during storage as compared to others. Hot-water dipping remarkably reduced initial microbial load of prepeeled onions, with over 1 log cycle decrease in aerobic bacterial count. After 7 days storage, no significant differences in viable aerobe count were observed among treated and untreated samples, with both showing $10^{6}-10^{7}\;CFU/g$. For sensory attributes including discoloration, wilting, decay, and visual quality, onions treated with hot-water dipping at $60^{\circ}C$ scored highest. Results suggested hot-water dipping at specific condition as practical post-processing treatment could effectively prolong shelf life of minimally processed onion.

Development and Evaluation of Predictive Model for Microstructures and Mechanical Material Properties in Heat Affected Zone of Pressure Vessel Steel Weld (압력용기강 용접 열영향부에서의 미세조직 및 기계적 물성 예측절차 개발 및 적용성 평가)

  • Kim, Jong-Sung;Lee, Seung-Gun;Jin, Tae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2399-2408
    • /
    • 2002
  • A prediction procedure has been developed to evaluate the microtructures and material properties of heat affected zone (HAZ) in pressure vessel steel weld, based on temperature analysis, thermodynamics calculation and reaction kinetics model. Temperature distributions in HAE are calculated by finite element method. The microstructures in HAZ are predicted by combining the temperature analysis results with the reaction kinetics model for austenite grain growth and austenite decomposition. Substituting the microstructure prediction results into the previous experimental relations, the mechanical material properties such as hardness, yielding strength and tensile strength are calculated. The prediction procedure is modified and verified by the comparison between the present results and the previous study results for the simulated HAZ in reactor pressure vessel (RPV) circurnferential weld. Finally, the microstructures and mechanical material properties are determined by applying the final procedure to real RPV circumferential weld and the local weak zone in HAZ is evaluated based on the application results.

INVESTIGATIONS OF OXIDATIONS OF SnOx AND ITS CHANGES OF THE PROPERTIES PREPARED BDEPOSITIONY REACTIVE ION-ASSISTED

  • Cho, J.S.;Choi, W.K.;Kim, Y.T.;Jung, H.J.;Koh, S.K.
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.766-772
    • /
    • 1996
  • Undoped $SnO_x$ thin films were deposited on Si(100) substrate by using reactive ioassisted deposition technique (R-IAD). In order to investigate the effect of initial oxygen content and heat treatment on the oxidation state and crystalline structure of tin oxide films, $SnO_x$ thin films were post-annealed at 400~$600^{\circ}C$ for 1 hr. in a vacuum ~$5 \times 10^{-3}$ -3/ Torr or were directly deposited on the substrate of $400^{\circ}C$ and the relative arrival ration ($Gamma$) of oxygen ion to Sn metal varied from 0.025 to 0.1, i.e., average impinging energy ($E_a$) form 25 to 100 eV/atom. As $E_a$ increased, the composition ratio of $N_ON{sn}$ changed from 1.25 to 1.93 in post-annealing, treatment and 1.21 to 1.87 in in-situ substrate heating. In case of post-annealing, the oxidation from SnO to $SnO_2$ was closely related to initial oxygen contents and post-annealing temperature, and the perfect oxidation of $SnO_2$ in the film was obtained at higher than $E_a$=75 eV/atom and $600^{\circ}C$. The temperature for perfect oxidation of $SnO_2$ was reduced as low as $400^{\circ}C$ through in-situ substrate heating. The variation of the chemical state of $SnO_x$ thin films with changing $E_a$'s and heating method were also observed by Auger electron spectroscopy.

  • PDF

Thermal Stability of the Interface between TaN Deposited by MOCVD and Electroless-plated Cu Film (MOCVD 방법으로 증착된 TaN와 무전해도금된 Cu박막 계면의 열적 안정성 연구)

  • 이은주;황응림;오재응;김정식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.12
    • /
    • pp.1091-1098
    • /
    • 1998
  • Thermal stability of the electroless deposited Cu thin film was investigated. Cu/TaN/Si multilayer was fabricated by electroless-depositing Cu thin layer on TaN diffusion barrier layer which was deposited by MOCVD on the Si substrate, and was annealed in $H_2$ ambient to investigate the microstructure of Cu film with a post heat-treatment. Cu thin film with good adhesion was successfully deposited on the surface of the TaN film by electroless deposition with a proper activation treatment and solution control. Microstructural property of the electroless-deposited Cu layer was improved by a post-annealing in the reduced atmosphere of $H_2$ gas up to $600^{\circ}C$. Thermal stability of Cu/TaN/Si system was maintained up to $600^{\circ}C$ annealing temperature, but the intermediate compounds of Cu-Si were formed above $650^{\circ}C$ because Cu element passed through the TaN layer. On the other hand, thermal stability of the Cu/TaN/Si system in Ar ambient was maintained below $550^{\circ}C$ annealing temperature due to the minimal impurity of $O_2$ in Ar gas.

  • PDF