• Title/Summary/Keyword: Post welding heat treatment PWHT

Search Result 63, Processing Time 0.018 seconds

An Electrochemical Property Stud on the Corrosion Behavior of Welding Part of RE36 Steel for Marine Structure (해양구조물용 RE36강의 용접부 부식거동에 관한 전기화학적 특성 연구)

  • 김성종;김진경;문경만
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.70-76
    • /
    • 2000
  • The effect of Post Weld Heat Treatment(PWHT) of RE36 steel for marine structure was investigated with parameters such as micro-vickers hardness, corrosion potential and corrosion current density of weld metal(WM), base metal(BM) and heat affected zone(HAZ), and both Al alloy anode generating current and Al alloy anode weight loss quantity etc. Hardness of post-weld heat treated BM, WM and HAZ is lower than that of As-welded condition of each region. However, hardness of HAZ was the highest among those three parts regardless of PWHT temperature and corrosion potential of WM was the highest among those three parts without regard to temperature and corrosion potential of WM was the highest among those three parts without regard to PWHT temperature. The amplitude of corrosion potential difference of each other three parts at PWHT temperature $550^{\circ}C$, $650^{\circ}C$ are smaller than that of three parts by As-welded condition and corrosion current density obtained by PWHT was also smaller than that of As-welded condition. Eventually, it was known that corrosion resistance was increased by PWHT. However both Al anode generating current and anode weight loss quantity were also decreased by PWHT compare to As-welded condition when RE36 steel is cathodically protected by Al anode. Therefore, it is suggested that the optimum PWHT temperature with increasing corrosion resistance and cathodic protection effect is $550^{\circ}C$.

  • PDF

A Study on the Mechanical Characteristics by the Change of Bevel Angle of Welding Joint During PWHT (溶接이음부 形狀變化에 따른 後熱處理時의 力學的 特性에 關한 硏究)

  • 방한서;강성원;김기성;김종명;노찬승
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.64-71
    • /
    • 1997
  • In order to define the effects on shapes of welding joint, during Post Welding Heat Treatment (PWHT), we have carried out numerical analysis on the several test pieces by using computer program which was based on thermal-elasto-plastic-creep theories for the study. And then, welding residual stresses after PWHT were measured same test-pieces to compare with the results of numerical analysis. The main results obtained from this study is as follows: 1) The distribution modes of welding residual stresses are same on the all test pieces after and during PWHT by the both sides (measurement and numerical analysis). 2) The mechanical difference for change the thickness of plate and bevel angle are not appeared. 3) In a mechanical point of view (like material quality test, welding deformation etc.), manimum bevel angle (40$^{\circ}$.) is more suitable than maximum bevel angle (70$^{\circ}$).

  • PDF

A Study on the Mechanical Behavior of Welded Parts in Thick Plate during Post Welding Heat Treatment (厚板熔接部의 應力除去 熱處理時의 力學的 擧動에 關한 硏究)

  • 방한서
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.103-111
    • /
    • 1993
  • Recently, several high-tensile steels(e.g. 80kg and above, $2^{1/4}Cr$-1Mo)having good quality to high temperature and pressure-resistance are widely used to construct petroleum-plant and pressure vessel of heat or nuclear-power plant. However, in the steels, reheating crack at grain boundaries of the heat affected zone(HAZ) occures during post welding heat treatment(PWHT)to remove welding residual stress. In order to study theoretically the characteristics of reheating crack created by PWHT, the computer program of three-dimensional thermal-elasto-plasto-creep analysis based on finite element method are developed, and then the mechanical behavior(history of creep strain accumulation and stress relaxation, etc)of welded join in thick plate during PWTH is clarified by the numerical results.

  • PDF

Cr-Mo鋼 熔接熱影響部의 破壞靭性과 熔接入熱量에 관한 硏究 II

  • 임재규;정세희
    • Journal of Welding and Joining
    • /
    • v.5 no.2
    • /
    • pp.9-16
    • /
    • 1987
  • Post weld heat treatment (PWHT) is carried out to increase the fracture toughness in heat affected zone(HAZ) and remove the residual stress. There occur some problems such as toughness decreement and stress relief cracking(SRC) in the coarse grained HAZ subjected to the effect of tempering treatment. Especially, embitterment of structure directly relates to the mode of fracture and is appeared as the difference of fracture surface, that is, grain boundary failure. Therefore, in this paper, PWHT was carried out under the stress of 0, 10, 20 and $30kg/cm^2$ to simulate residual stress in HAZ welded by heat input of 10, 30 and 40KJ/cm. Applied stress in weld HAZ during PWHT assisted precipitin of over saturated alloying element in the structure, and grain boundary failure according to welding heat input didn't almost appear at the heat input of 10 KJ/cm, but it appeared from being the applied stress of $30kg/cm^2$ at $30KJ/cm and 20kg/mm^2$ at 40KJ/cm.

  • PDF

Numerical analysis of post welding heat treatment base on the thermal creep elastic-plastic theory (점열탄소성 이론에 의한 용접후열처리에 대한 수치해석)

  • 방한서;차용훈;오율권;노찬승;김종명
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.113-123
    • /
    • 1997
  • The welding residual stresses produced by welding frequently cause a crack and promote stress corrosion etc. in heat affected zone contained with external load and weakness of material. For the purpose pof relaxation of welding residual stress, post welding heat teratment(PWHT) is widely used. In this paper, the computer program which is based on Thermal-Elasto-plastic-creep theory for plane deformation on developed by finite element method (F.E.M) and verified its propriety by experimental measurement and also by using the developed computer program. The mechanical behavior of butt welding joint is clairfied during PWHT.

  • PDF

Effect of Welding Heat Input and PWHT Cooling Rate on Mechanical Properties of Welded Region at SAW of 1.25Cr-0.5Mo Steel for Pressure Vessel (압력용기용 1.25Cr-0.5Mo 강의 Submerged Arc Welding시 입열 및 PWHT 냉각속도가 용접부 기계적 성질에 미치는 영향)

  • Lee Dong-Hwan;Park Jong-Jin
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.26-31
    • /
    • 2004
  • In order to propose the optimum welding condition for field application, the effects of welding heat input and cooling rate at PWHT on the mechanical properties were investigated. Submerged arc welding of 1.25Cr-0.5Mo steel for pressure vessel was conducted at welding heat inputs of 15.2kJ/cm, 30.9kJ/cm, and 44.8kJ/cm, and cooling rates of 184$^{\circ}C$/hr, 55$^{\circ}C$/hr, and 2$0^{\circ}C$/hr at PWHT. From the test results, as the welding heat input increase up to 30.9kJ/cm, the changes of microstructure and impact toughness were small. At the heat input of 44.8kJ/cm, however, toughness decreased obviously due to the coarsening of coarse-grained HAZ and formation of ferrite at bainite grainboundary of weld metal. On the other hand, cooling rates at PWHT did not effect on the changes in microstructure and mechanical properties. Even though tensile strength and impact toughness at all welding conditions of this study were above the minimum specification requirement, it was confirmed that heat input of 30.9kJ/cm was the optimum welding condition to improve welding performance by higher heat input.

Study on Fracture Toughness and Heat Input in Weld HAZ of Cr-Mo Steel (I) (welding structure) (Cr-Mo강 용접열영향부의 파괴인성과 용접입열량에 관한 연구(I) (HAZ 고유조직을 중심으로))

  • 임재규;정세희
    • Journal of Welding and Joining
    • /
    • v.2 no.2
    • /
    • pp.54-61
    • /
    • 1984
  • Construction of welding structure is greatly dependent upon welding heat cycle. Fracture toughness is decreased remarkablely due to coarse grained HAZ and inequal residual stress of three dimensions to originate in welding. Post weld heat treatment(PWHT) is carried out to increase the fracture toughness of HAZ and to remove the residual stress. There occur some problem such as toughness decrement and stress relief cracking(SRC) in the coarse grained HAZ subject to the effect of tempering treatment. Therefore, in this paper, the effect of heat inputs affecting cooling rate and PWHT under the no stress on fracture toughness were evaluated by crack opening displacement (COD), SEM and micro-hardness test. Experimental results are as follows; 1. Fracture toughness of weld HAZ is dependent upon weld heat cycle and it is decreased with increment of heat input, but the degree of improvement of fracture toughness after PWHT was linearly increased with heat input. 2. Hardness of the parent metal is not changed, but the softening of coarse grained HAZ is remarkable due to PWHT. 3. Fracture surface of as-weld show the perfect brittle fracture with the cleavage fracture, but after PWHT they appear the ductile fracture surface with dimple.

  • PDF

Study on Friction Welding of Torsion Bar Material(II) - Effect of PWHT on Friction Weld Quality- (토션바재의 마찰용접에 관한 연구(II) -용접 후열처리가 마찰용접 품질에 미치는 영향-)

  • Oh, Sae-Kyoo;Lee, Jong-Du
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.94-99
    • /
    • 1990
  • This paper deals with investigating experimentally the effects of PWHT on the weld quality such as strength, toughness, hardness and micro-structure of the welded joints in friction welding of torsion bar material SUP9A bar to bar. The results obtained are summarized as follows; 1) It was certified that the condition of the post-weld heat treatment(PWHT) for the friction welded joints was very satisfactory because both strength and toughness of the joints were improved as almost same as those of the base metal or better by the PWHT. 2) The peak of hardness distribution of the friction welded joints can be eliminated by PWHT, resulting in being almost equalized at the weld interface, the HAZ(heat affected zone) and the base metal. 3) The micro-structure of the base meta., HAZ and weld interface(WI) of friction welded joints welded at the optimum welding condition consists of the same sorbite structure obtained by PWHT and fined sorbite at WI, resulting in increasing toughness as well as strength, and no micro structural defect has been found at the friction welded zone.

  • PDF

Study on Friction Welding of Torsion Bar Material(II) - Effect of PWHT on Friction Weld Quality- (토션바재의 마찰용접에 관한 연구(II) -용접 후열처리가 마찰용접 품질에 미치는 영향-)

  • Oh, Sae-Kyoo;Lee, Jong-Du
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.244-244
    • /
    • 1990
  • This paper deals with investigating experimentally the effects of PWHT on the weld quality such as strength, toughness, hardness and micro-structure of the welded joints in friction welding of torsion bar material SUP9A bar to bar. The results obtained are summarized as follows; 1) It was certified that the condition of the post-weld heat treatment(PWHT) for the friction welded joints was very satisfactory because both strength and toughness of the joints were improved as almost same as those of the base metal or better by the PWHT. 2) The peak of hardness distribution of the friction welded joints can be eliminated by PWHT, resulting in being almost equalized at the weld interface, the HAZ(heat affected zone) and the base metal. 3) The micro-structure of the base meta., HAZ and weld interface(WI) of friction welded joints welded at the optimum welding condition consists of the same sorbite structure obtained by PWHT and fined sorbite at WI, resulting in increasing toughness as well as strength, and no micro structural defect has been found at the friction welded zone.

An Electrochemical Study on the Effect of Post-Weld Heat Treatment about Corrosion Resistance Property of SS400 Steel for Ship`s Materials (선박재료용 SS400강의 내식성에 대한 용접후 열처리효과에 관한 전기화학적 연구 (II))

  • 김성종;김진경;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.58-68
    • /
    • 2000
  • When SS400 steel was welded with low hydrogen type and ilmennite type welding, the effect of post-weld heat treatment(PWHT) was investigated with parameters such as micro vickers hardness, corrosion potential, polarization behaviors, galvanic current, Al anode generating current and Al anode weight loss etc. Hardness of each parts(HAZ, BM, WM) by PWHT in case of low hydrogen type and ilmennite type welding was lower than that of each parts by As-welded However hardness of WM area in case of low hydrogen type and ilmennite type welding was the highest among those three parts regardless of PWHT, Whereas in case of ilmennite type welding, WM area was the highest potential among these three parts on galvanic potential series with As-welded while BM area was the highest potential among these three parts by PWHT on the contrary. And in case of low hydrogen type welding, galvanic corrosion and micro cell corrosion of welding parts was decreased with PWHT. However, It was increased with PWHT in case of ilmennite type welding. Moreover Al anode generating current and anode weight loss in case of low hydrogen type was decreased by PWHT compared to As-wedled but, which was increased than that of As-welded in case of ilmennite type welding. Therefore, it is suggested that Corrosion resistance property in case of low hydrogen type welding is increased by PWHT. However its property was devreased with PWHT in case of ilmennite type welding.

  • PDF