• 제목/요약/키워드: Post structures

검색결과 950건 처리시간 0.022초

"유네스코 지속가능발전교육 세계회의"의 성과와 시사점 (Outcomes and Implications of UNESCO ESD World Conference)

  • 이선경;강상규
    • 한국환경교육학회지:환경교육
    • /
    • 제22권3호
    • /
    • pp.1-14
    • /
    • 2009
  • The UNESCO World Conference on "Education for Sustainable Development - Moving into the Second Half of the United Nations Decade" was held in Bonn, Germany, from 31 March to 2 April 2009, as the DESD approaches it's mid-point. It brought 900 participants including 47 ministers and deputy-ministers of education from 147 countries. The objectives of the conference were to: (1) highlight the essential contribution of Education for Sustainable Development (ESD) to all of education and to achieving quality education ("Why is ESD relevant?"); (2) promote international exchange on ESD ("What can we learn from each other?"); (3) carry out a stock-taking of DESD implementation ("What have we achieved so far, what are the lessons learnt?"); (4) develop strategies for the way ahead ("Where do we want to go from here ?"). The conference provided opportunities for all participants to recognize the importance of ESD as the way to meet challenges of the present unsustainable world and discuss outcomes of first-half of DESD and action plans for second-half of DESD. In particular, one plenary session was focused on the DESD Monitoring and Evaluation process, with a presentation of the key findings of the draft global report on the context and structures of ESD, as well as regional perspectives. As a result of the conference, participants adopted the Bonn Declaration which would serve as the backbone for the further development of the post-Bonn process within the framework of the DESD.

  • PDF

Multiple Cracking Model of Fiber Reinforced High Performance Cementitious Composites under Uniaxial Tension

  • Wu, Xiangguo;Han, Sang-Mook
    • International Journal of Concrete Structures and Materials
    • /
    • 제3권1호
    • /
    • pp.71-77
    • /
    • 2009
  • A theoretical model of multiple cracking failure mechanism is proposed herein for fiber reinforced high performance Cementitious composites. By introducing partial debonding energy dissipation on non-first cracking plane and fiber reinforcing parameter, the failure mechanism model of multiple cracking is established based on the equilibrium assumption of total energy dissipation on the first crack plane and non-first cracking plane. Based on the assumption of the first crack to be the final failure crack, energy dissipation terms including complete debonding energy, partial debonding energy, strain energy of steel fiber, frictional energy, and matrix fracture energy have been modified and simplified. By comparing multiple cracking number and energy dissipations with experiment results of the reference's data, it indicates that this model can describe the multiple cracking behavior of fiber reinforced high performance cementitious composites and the influence of the partial debonding term on energy dissipation is significant. The model proposed may lay a foundation for the predictions of the first cracking capacity and post cracking capacity of fiber reinforced high performance cementitious composites and also can be a reference for optimal mixture for construction cost.

Alternatives to Enhance Flat Slab Ductility

  • Husain, Mohamed;Eisa, Ahmed S.;Roshdy, Ramy
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권1호
    • /
    • pp.161-169
    • /
    • 2017
  • Flat slab systems are vastly used in multi-story buildings because of their savings in story height and construction time, as well as for their flexibility in architectural remodeling. However, they frequently suffer brittle punching-shear failure around columns, especially when subjected to lateral loads. Therefore, seismic codes labeled flat slabs as non-ductile systems. This research goal is investigating some construction alternatives to enhance flat slab ductility and deformability. The alternatives are: adding different types of punching-shear reinforcement, using discreet fibers in concrete mixes, and increasing thickness of slab around columns. The experimental study included preparation and testing of seven half-scale interior slab-column connections up to failure. The first specimen is considered a reference, the second two specimens made of concrete mixes with different volumetric ratios of polymer fibers. Another three specimens reinforced with different types of punching-shear reinforcement, and the last specimen constructed with drop panel of inverted pyramidal shape. It is found that using the inverted pyramid-shape drop panel of specimen, increases the punching-shear capacity, and the initial and the post-cracking stiffnesses. The initial elastic stiffnesses are different for all specimens especially for the slab with closed stirrups where it is experienced the highest initial stiffness compared to the reference slab.

Fatigue Assessment Model of Corroded RC Beams Strengthened with Prestressed CFRP Sheets

  • Song, Li;Hou, Jian
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.247-259
    • /
    • 2017
  • This paper presents a fatigue assessment model that was developed for corroded reinforced concrete (RC) beams strengthened using prestressed carbon fiber-reinforced polymer (CFRP) sheets. The proposed model considers the fatigue properties of the constituent materials as well as the section equilibrium. The model provides a rational approach that can be used to explicitly assess the failure mode, fatigue life, fatigue strength, stiffness, and post-fatigue ultimate capacity of corroded beams strengthened with prestressed CFRP. A parametric analysis demonstrated that the controlling factor for the fatigue behavior of the beams is the fatigue behavior of the corroded steel bars. Strengthening with one layer of non-prestressed CFRP sheets restored the fatigue behavior of beams with rebar at a low corrosion degree to the level of the uncorroded beams, while strengthening with 20- and 30%-prestressed CFRP sheets restored the fatigue behavior of the beams with medium and high corrosion degrees, respectively, to the values of the uncorroded beams. Under cyclic fatigue loading, the factors for the strengthening design of corroded RC beams fall in the order of stiffness, fatigue life, fatigue strength, and ultimate capacity.

Experimental and Numerical Assessment of the Service Behaviour of an Innovative Long-Span Precast Roof Element

  • Lago, Bruno Dal
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.261-273
    • /
    • 2017
  • The control of the deformative behaviour of pre-stressed concrete roof elements for a satisfactory service performance is a main issue of their structural design. Slender light-weight wing-shaped roof elements, typical of the European heritage, are particularly sensitive to this problem. The paper presents the results of deformation measurements during storage and of both torsional-flexural and purely flexural load tests carried out on a full-scale 40.5 m long innovative wing-shaped roof element. An element-based simplified integral procedure that de-couples the evolution of the deflection profile with the progressive shortening of the beam is adopted to catch the experimental visco-elastic behaviour of the element and the predictions are compared with normative close-form solutions. A linear 3D fem model is developed to investigate the torsional-flexural behaviour of the member. A mechanical non-linear beam model is used to predict the purely flexural behaviour of the roof member in the pre- and post-cracking phases and to validate the loss prediction of the adopted procedure. Both experimental and numerical results highlight that the adopted analysis method is viable and sound for an accurate simulation of the service behaviour of precast roof elements.

프로젝션 기법을 활용한 위상 최적설계 (Topology Design Optimization using Projection Method)

  • 하승현
    • 한국전산구조공학회논문집
    • /
    • 제29권4호
    • /
    • pp.293-299
    • /
    • 2016
  • 본 논문은 확장된 프로젝션 기법을 사용한 위상 최적설계 방법을 다루고 있다. 다양한 형상과 길이 스케일을 가지는 프로젝션 함수를 개발해 위상 최적설계 기법에 적용시킴으로써, 복합재료의 설계에서 형상 및 크기가 미리 주어진 보강재의 최적 배치를 위상 최적설계를 통해 결정할 수 있음을 확인하였다. 또한 이와 같은 프로젝션 기법이 균질화법과 결합되어 체적탄성률 또는 전단탄성률 등의 유효 재료특성을 최대화시키는 단위 구조를 설계함으로써, 주기 구조를 가지는 복합재료에서 보강재의 최적 배치를 결정하고 그 유효 재료특성값을 수치적으로 계산할 수 있음을 여러 수치 예제들을 통해서 검증하였다.

Closed-form optimum tuning formulas for passive Tuned Mass Dampers under benchmark excitations

  • Salvi, Jonathan;Rizzi, Egidio
    • Smart Structures and Systems
    • /
    • 제17권2호
    • /
    • pp.231-256
    • /
    • 2016
  • This study concerns the derivation of optimum tuning formulas for a passive Tuned Mass Damper (TMD) device, for the case of benchmark ideal excitations acting on a single-degree-of-freedom (SDOF) damped primary structure. The free TMD parameters are tuned first through a non-linear gradient-based optimisation algorithm, for the case of harmonic or white noise excitations, acting either as force on the SDOF primary structure or as base acceleration. The achieved optimum TMD parameters are successively interpolated according to appropriate analytical fitting proposals, by non-linear least squares, in order to produce simple and effective TMD tuning formulas. In particular, two fitting models are presented. The main proposal is composed of a simple polynomial relationship, refined within the fitting process, and constitutes the optimum choice. A second model refers to proper modifications of literature formulas for the case of an undamped primary structure. The results in terms of final (interpolated) optimum TMD parameters and of device effectiveness in reducing the structural dynamic response are finally displayed and discussed in detail, showing the wide and ready-to-use validity of the proposed optimisation procedure and achieved tuning formulas. Several post-tuning trials have been carried out as well on SDOF and MDOF shear-type frame buildings, by confirming the effective benefit provided by the proposed optimum TMD.

Improved Kalman filter with unknown inputs based on data fusion of partial acceleration and displacement measurements

  • Liu, Lijun;Zhu, Jiajia;Su, Ying;Lei, Ying
    • Smart Structures and Systems
    • /
    • 제17권6호
    • /
    • pp.903-915
    • /
    • 2016
  • The classical Kalman filter (KF) provides a practical and efficient state estimation approach for structural identification and vibration control. However, the classical KF approach is applicable only when external inputs are assumed known. Over the years, some approaches based on Kalman filter with unknown inputs (KF-UI) have been presented. However, these approaches based solely on acceleration measurements are inherently unstable which leads poor tracking and so-called drifts in the estimated unknown inputs and structural displacement in the presence of measurement noises. Either on-line regularization schemes or post signal processing is required to treat the drifts in the identification results, which prohibits the real-time identification of joint structural state and unknown inputs. In this paper, it is aimed to extend the classical KF approach to circumvent the above limitation for real time joint estimation of structural states and the unknown inputs. Based on the scheme of the classical KF, analytical recursive solutions of an improved Kalman filter with unknown excitations (KF-UI) are derived and presented. Moreover, data fusion of partially measured displacement and acceleration responses is used to prevent in real time the so-called drifts in the estimated structural state vector and unknown external inputs. The effectiveness and performance of the proposed approach are demonstrated by some numerical examples.

Structural behavior of partially encased composite columns under axial loads

  • Pereira, Margot F.;De Nardin, Silvana;El Debs, Ana L.H.C.
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1305-1322
    • /
    • 2016
  • This paper presents the results of experimental and numerical model analyses on partially encased composite columns under concentric loads. The main objective of this study is to evaluate the influence of replacing the conventional longitudinal and transverse steel bars by welded wire mesh on the structural behavior of these members under concentric loads. To achieve these goals experimental tests on four specimens of partially encased composite columns submitted to axial loading were performed and the results were promising in terms of replacing the traditional reinforcement by steel meshes. In addition, a numerical FE model was developed using the software DIANA$^{(R)}$ with FX+. The experimental results were used to validate the numerical model. Satisfactory agreement between experimental and numerical results was observed in both capacity and deformability of the composite columns. Despite of the simplifying assumptions of perfect bond between steel and concrete, the numerical model adequately represented the columns behavior. A finite element parametric study was performed and parameters including thickness of the steel profile and the concrete and steel strengths were evaluated. The parametrical study results found no significant changes in the partially encased columns behavior due to variations of the steel profile thickness or yield strength. However, significant changes in the post peak behavior were observed when using high strength concrete and these results suggest a change in the failure mode.

Shear response estimate for squat reinforced concrete walls via a single panel model

  • Massone, Leonardo M.;Ulloa, Marco A.
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.647-665
    • /
    • 2014
  • Squat reinforced concrete walls require enough shear strength in order to promote flexural yielding, which creates the need for designers of an accurate method for strength prediction. In many cases, especially for existing buildings, strength estimates might be insufficient when more accurate analyses are needed, such as pushover analysis. In this case, estimates of load versus displacement are required for building modeling. A model is developed that predicts the shear load versus shear deformation of squat reinforced concrete walls by means of a panel formulation. In order to provide a simple, design-oriented tool, the formulation considers the wall as a single element, which presents an average strain and stress field for the entire wall. Simple material constitutive laws for concrete and steel are used. The developed models can be divided into two categories: (i) rotating-angle and (ii) fixed-angle models. In the first case, the principal stress/strain direction rotates for each drift increment. This situation is addressed by prescribing the average normal strain of the panel. The formation of a crack, which can be interpreted as a fixed principal strain direction is imposed on the second formulation via calibration of the principal stress/strain direction obtained from the rotating-angle model at a cracking stage. Two alternatives are selected for the cracking point: fcr and 0.5fcr (post-peak). In terms of shear capacity, the model results are compared with an experimental database indicating that the fixed-angle models yield good results. The overall response (load-displacement) is also reasonable well predicted for specimens with diagonal compression failure.