• Title/Summary/Keyword: Post annealing effect

Search Result 224, Processing Time 0.025 seconds

Effect of $NH_3$ on the Synthesis of Carbon Nanotubes Using Thermal Chemical Vapor Deposition

  • Cho, Hyun-Jin;Jang, In-Goo;Yoon, So-Jung;Hong, Jin-Pyo;Lee, Nae-Sung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1219-1224
    • /
    • 2006
  • This study investigates the effect of $NH_3$ gas upon the growth of carbon nanotubes (CNTs) using thermal chemical vapor deposition. It is considered that the CNT synthesis occurs mainly through two steps, clustering of catalyst particles and subsequent growth of CNTs. We thus introduced $NH_3$ during either an annealing or growth step. When $NH_3$ was fed only during annealing, CNTs grew longer and more highly crystalline with diameters unchanged. An addition of $NH_3$ during growth, however, resulted in shorter CNTs with lower crystallinity while increased their diameters. Vertically aligned, highly populated CNT samples showed poor field emission characteristics, leading us to apply post-treatments onto the CNT surface. The CNTs were treated by adhesive tapes or etched back by dc plasma of $N_2$ to reduce the population density and the radius of curvatures of CNTs. We discuss the morphological changes of CNTs and their field emission properties upon surface treatments.

  • PDF

Annealing Effects on the Properties of Bi-doped ZnO Thin Film (Bi-doped ZnO 박막의 열처리에 따른 특성)

  • Shin, Johngeon;Hwang, Injoo;Cho, Shinho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.1
    • /
    • pp.13-19
    • /
    • 2020
  • Annealing effects on the properties of Bi-doped ZnO thin films were investigated. Bi- doped ZnO thin films were deposited on quartzs substrates at 300℃ by using radio-frequency magnetron sputtering system. Post heat treatments at 600, 700, and 800℃ were performed to evaluate the effect of annealing temperatures on the structural, optical, and electrical properties of Bi-doped ZnO thin films. FE-SEM images showed the dramatic surface morphology changes by rearrangement of elements at high heat treatment temperature of 800℃. X-ray diffraction analysis indicated that the peaks of the Bi-doped ZnO thin films were same as the peaks of the (002) planes of ZnO peak-positioned at 2θ=34.0° and peak intensities and FWHMs were improved as the annealing temperatures increased. The optical transmittance was improved with increasing annealing temperatures and was over 80% in the wavelength region between 435 and 1100 nm at the annealing temperature of 700 and 800℃. With increasing annealing temperature, the electron concentrations and electron mobilities were increased. On the other hand, electric resistivity of the films were decreased with increasing annealing temperatures. These results showed that the heat treatment temperature is an important parameter to improve the structural, optical, and electrical properties of Bi-doped ZnO thin films.

Annealing of Sn Doped ZnO Thin Films Grown by Radio Frequency Powder Sputtering (라디오주파수 분말 스퍼터링 방법으로 성장시킨 주석을 도핑한 산화아연 박막의 열처리)

  • Lee, Haram;Jeong, Byeong Eon;Yang, Myeong Hun;Lee, Jong Kwan;Choi, Young Bin;Kang, Hyon Chol
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.3
    • /
    • pp.111-119
    • /
    • 2018
  • We report the post-annealing effect of Sn doped ZnO (ZnO:Sn) thin film grown on sapphire (001) substrate using radio-frequency powder sputtering method. During thermal annealing in a vacuum atmosphere, the ZnO:Sn thin film is transformed into a porous thin film. Based on X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray analyses, a possible mechanism for the production of pores is presented. Sn atoms segregate to form clusters that act as catalysts to dissociate Zn-O bonds. The Zn and O atoms subsequently vaporize, leading to the formation of pores in the ZnO:Sn thin film. We also found that Sn clusters were oxidized to form SnO or $SnO_2$ phases.

The Annealing Effect of Diamond-like Carbon Films for RF MEMS Switch

  • Hwang, Hyun-Suk;Choi, Won-Seok;Cha, Jae-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11A
    • /
    • pp.1091-1096
    • /
    • 2010
  • Stiction in microelectromechanical systems (MEMS) has been a major failure mechanism. Especially, in RF MEMS switches, moving parts often suffered in-use and release related stiction problems. Some materials and methods have been used to prevent this problem. Diamond-like carbon (DLC) has not only been used as a protective material owing to its good mechanical properties but also has been used as a hydrophobic material. Its properties could be controlled by post annealing treatment in various conditions. We synthesized DLC films using a radio frequency plasma enhanced chemical vapor deposition (RF PECVD) method on silicon substrates using methane ($CH_4$) and hydrogen ($H_2$) gas. Then, the change of the hydrophobic property of the films was investigated undervarious annealing temperatures in nitrogen and in oxygen ambient. The films, that were annealed above $700^{\circ}C$ in nitrogen ambient, showed a high contact angle of water (> $90^{\circ}$) even though their mechanical property was sacrificed to some degree. The structural variation and the changes of the hydrophobic and mechanical properties of the DLC films were analyzed by Raman spectrum, contact angle measurement, surface profiler, and a nanoindentation test.

Electrical Properties of ITO Thin Film Deposited by Reactive DC Magnetron Sputtering using Various Sn Concentration Target (반응성 DC 마그네트론 스퍼터링법으로 증착한 ITO 박막의 전기적 특성 평가)

  • Kim, Min-Je;Jung, Jae-Heon;Song, Pung-Keun
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.311-315
    • /
    • 2014
  • Indium tin oxide (ITO) thin films (30 nm) were deposited on PET substrate by reactive DC magnetron sputtering using In/Sn(2, 5 wt.%) metal alloy target without intentionally substrate heating during the deposition under different DC powers of 70 ~ 110 W. The electrical properties were estimated by Hall-effect measurements system. The resistivity of ITO thin film deposited using In/Sn (5 wt.%) metal alloy target at low DC power increased with increasing annealing time. However, they increased with increasing annealing time at high DC power. In the case of ITO (Sn 2 wt%), we can't find clear change in resistivity with increasing annealing time. However, carrier density and mobility showed difference behavior due to change of oxygen vacancy.

Effect of Annealing Temperature on the Properties of ITO/Au/ITO Films

  • Chae, Joo-Hyun;Kim, Dae-Il
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.108-110
    • /
    • 2009
  • Transparent Sn-doped $In_2O_3$ (ITO) single-layer and ITO/Au/ITO multilayer films were deposited on glass substrates by reactive magnetron sputtering to compare the properties of the films. They were then annealed in a vacuum of $1{\times}10^{-2}\;Pa$ at temperatures ranging from 150 to $450^{\circ}C$ for 20 min to determine the effect of the annealing temperature on the properties of the films. As-deposited 100 nm thick ITO films exhibit a sheet resistance of $130{\Omega}/{\square}$ and optical transmittance of 77% at a wavelength length of 550 nm. By inserting a 5 nm-thick Au layer in ITO/metal/ITO (IMI) films, the sheet resistance was decreased to as low as $20{\Omega}/{\square}$ and the optical transmittance was decreased to as little as 73% at 550 nm. Post-deposition annealing of ITO/Au/ITO films led to considerably lower electrical resistivity and higher optical transparency. In the Xray diffraction pattern, as-deposited ITO films did not show any diffraction peak, whereas as-deposited ITO/ Au/ITO films have Au (222) and $In_2O_3$ (110) crystal planes. When the annealing temperature reached the 150 - $450^{\circ}C$ range, the both diffraction peak intensities increased significantly. A sheet resistance of $8{\Omega}/{\square}$ and an optical transmittance of 82% were obtained from the ITO/Au/ITO films annealed at $450^{\circ}C$.

Effect of Annealing on Ga2O3/Al2O3/SiC Devices Fabricated by RF Sputtering (어닐링이 RF 스퍼터링으로 제작된 Ga2O3/Al2O3/SiC 소자에 미치는 영향 연구)

  • Lee, Hee-Jae;Kim, Min-Yeong;Moon, Soo-Young;Byun, Dong-Wook;Jung, Seung-Woo;Koo, Sang-Mo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.85-89
    • /
    • 2022
  • We reported on annealing effect on Ga2O3/Al2O3/SiC devices grown by radio frequency sputtering method. Post-deposition annealing at 900 ℃ was performed, which results in crystallization in the Ga2O3 films. The major peaks (-401) and (403) of Ga2O3 which was thermally treated at 900 ℃ appears in the x-ray diffraction (XRD) results. Auger electron spectroscopy (AES) shows that Ga and Al atoms seems to be diffused into the opposite direction Al2O3 and Ga2O3 after annealing. Transfer and output characteristics of back-gate transistor were analyzed where SiC substrate is used as gate material. On-state current and on/off ratio increased almost 109 and 106 times higher in the 900 ℃ annealed sample.

The Electrical Properties of Post-Annealing in Neutron-Irradiated 4H-SiC MOSFETs (중성자 조사한 4H-SiC MOSFET의 열처리에 의한 전기적 특성 변화)

  • Lee, Taeseop;An, Jae-In;Kim, So-Mang;Park, Sung-Joon;Cho, Seulki;Choo, Kee-Nam;Cho, Man-Soon;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.198-202
    • /
    • 2018
  • In this work, we have investigated the effect of a 30-min thermal anneal at $550^{\circ}C$ on the electrical characteristics of neutron-irradiated 4H-SiC MOSFETs. Thermal annealing can recover the on/off characteristics of neutron-irradiated 4H-SiC MOSFETs. After thermal annealing, the interface-trap density decreased and the effective mobility increased in terms of the on-characteristics. This finding could be due to the improvement of the interfacial state from thermal annealing and the reduction in Coulomb scattering due to the reduction in interface traps. Additionally, in terms of the off-characteristics, the thermal annealing resulted in the recovery of the breakdown voltage and leakage current. After the thermal annealing, the number of positive trapped charges at the MOSFET interface was decreased.

Annealing Effect and Tunability of BaZr0.08Ti0.92O3 Polycrystal Grown in N2 Gas Atmosphere by Floating Zone Technique (Floating Zone Technique법으로 질소분위기 하에서 성장한 BaZr0.08Ti0.92O3 다결정의 Tunability 및 열처리 효과)

  • Hwang, Ho-Byong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1178-1185
    • /
    • 2004
  • In the atmosphere of $N_2$ gas, BaZ $r_{0.08}$ $Ti_{0.92}$ $O_3$ polycrystal was grown by floating zone technique using BaZ $r_{0.08}$ $Ti_{0.92}$ $O_3$ ceramics as a feed and SrTi $O_3$(1l0) single cystal as a seed. The dielectric constant and loss at 10 kHz, 100 kHz, and 1 MHz for the as-grown sample were measured as a function of temperature in the temperature range between -10$0^{\circ}C$ and 150 $^{\circ}C$ to find a dielectric peak with frequency dispersion at Curie point. The hysteresis loop showed that the grown sample had very small polarization which was 0-0.01 $\mu$C/$\textrm{cm}^2$ for the applied dc-electric fields from -7 kV/cm to +7 kV/cm. However, the normal hysteresis loop was appeared after oxygen annealing. The electric-field dependence of the dielectric constant for both the as-grown and the post-annealed samples was studied by measuring the dielectric constants as a function of the biased-electric fields and their tunability was figured out from it at room temperature(27 $^{\circ}C$) and cryotemperature( -73$^{\circ}C$). Tunability for the as-grown sample was 51 % and the figure of merit 20.4 at 10kHz with the biased electric-field of 12 kV/cm. The tunability for the grown sample may be increased up to 80 % if the electric field of 25 kV/cm is applied. Tunability for the post-annealed sample was 41 % and the figure of merit 10.3 at 10 kHz with the biased electric-field of 12 kV /cm. Post-annealing improved the crystallinity of the as-grown sample but decreased its tunability.ability.

ZnO films grown on GaN/sapphire substrates by pulsed laser deposition

  • Suh, Joo-Young;Song, Hoo-Young;Shin, Myoung-Jun;Park, Young-Jin;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.207-207
    • /
    • 2010
  • Both ZnO and GaN have excellent physical properties in optoelectronic devices such as blue light emitting diode (LED), blue laser diode (LD), and ultra-violet (UV) detector. The ZnO/GaN heterostructure, which has a potential to achieve the cost efficient LED technology, has been fabricated by using radio frequency (RF) sputtering, pyrolysis, metal organic chemical vapor deposition (MOCVD), direct current (DC) arc plasmatron, and pulsed laser deposition (PLD) methods. Among them, the PLD system has a benefit to control the composition ratio of the grown film from the mixture target. A 500-nm-thick ZnO film was grown by PLD technique on c-plane GaN/sapphire substrates. The post annealing process was executed at some varied temperature between from $300^{\circ}C$ to $900^{\circ}C$. The morphology and crystal structural properties obtained by using atomic force microscope (AFM) and x-ray diffraction (XRD) showed that the crystal quality of ZnO thin films can be improved as increasing the annealing temperature. We will discuss the post-treatment effect on film quality (uniformity and reliability) of ZnO/GaN heterostructures.

  • PDF