• Title/Summary/Keyword: Post and composite core

Search Result 60, Processing Time 0.033 seconds

THE FRACTURE CHARACTERISTICS OF GLASS FIBER POST AND CORE ON USING DIFFERENT TYPES OF CORE RESIN MATERIALS

  • Shim Dong-Wook;Shim June-Sung;Lee Seok-Hyung;Lee Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.3
    • /
    • pp.280-293
    • /
    • 2004
  • Statement of problem. Glass fiber post is one of recent developments to accommodate esthetic restoration for endodontically treated teeth. This has many advantages over conventional post system in physical properties, esthetic factor, risk of root and restoration fracture, adhesion to core, radiopacity, removal and retrievabilty, biocompatibility and chemical stability. Purpose. This in vitro study was to evaluate the most suitable type of resin core for the glass fiber post through surveying the fracture modes and the maximum load that fractures the tooth. Material and methods. 50 sound maxillary premolars restored with glass fiber posts($ParaPost^{(R)}$ Fiber White) and different types of resin cores(ParaCore, $Z100^{TM}$, $Rebilda^{(R)}$ and $Admira^{(R)}$) were prepared and loaded to faiure in a universal test machine. The maximum fracture load and fracture mode were investigated in the specimens that were restored with resin and those of metal cast and core. With the data, Wilcoxon rank sum test was used to validate the significance between the test groups, and Tukey' s studentized range test was used to check if there is any significant statistical difference between each test group. Every analysis was approved with 95% reliance. Results. On measuring the maximum fracture load of teeth specimens, there was a significant difference between the maximum fracture loads of the tooth specimens. ParaCore showed the highest mean maximum fracture load followed by $Z100^{TM}$. And, the distribution of fracture mode of tooth specimens showed generally Type D, the three parted fracture of the core around the post was mostly seen(62.5%), and specifically, ParaCore showed 90% and $Z100^{TM}$ showed 100% Type D fracture. Conclusion. Referring to the values of maximum fracture load and mean compressive fracture load, ParaCore and $Z100^{TM}$ had high values and are recommended as tooth colored resin core material for glass fiber post. CLINICAL IMPLICATIONS. This study was carried out intending to be of aid in selecting the appropriate resin core for the glass fiber post. The dual cure type composite resin ParaCore and light cure type composite resin $Z100^{TM}$ have good properties and are recommended as tooth colored resin core material for glass fiber post.

INFLUENCE OF POST TYPES AND SIZES ON FRACTURE RESISTANCE IN THE IMMATURE TOOTH MODEL (미성숙 치아 모델에서 포스트의 종류와 크기가 치아의 파절 저항성에 미치는 영향에 관한 연구)

  • Kim, Jong-Hyun;Park, Sung-Ho;Park, Jeong-Won;Jung, Il-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.4
    • /
    • pp.257-266
    • /
    • 2010
  • The purpose of this study was to determine the effect of post types and sizes on fracture resistance in immature tooth model with various restorative techniques. Bovine incisors were sectioned 8 mm above and 12 mm below the cementoenamel junction to simulate immature tooth model. To compare various post-and-core restorations, canals were restored with gutta-percha and resin core, or reinforced dentin wall with dual-cured resin composite, followed by placement of D.T. LIGHT-POST, ParaPost XT, and various sizes of EverStick Post individually. All of specimens were stored in the distilled water for 72 hours and underwent 6,000 thermal cycles. After simulation of periodontal ligament structure with polyether impression material, compressive load was applied at 45 degrees to the long axis of the specimen until fracture was occurred. Experimental groups reinforced with post and composite resin were shown significantly higher fracture strength than gutta-percha group without post placement (p < 0.05). Most specimens fractured limited to cervical third of roots. Post types did not influence on fracture resistance and fracture level significantly when cement space was filled with dual-cured resin composite. In addition, no statistically significant differences were seen between customized and standardized glass fiber posts, which cement spaces were filled with resin cement or composite resin individually. Therefore, root reinforcement procedures as above in immature teeth improved fracture resistance regardless of post types and sizes.

FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION ACCORDING TO THE METHOD OF RESTORATION AFTER ROOT CANAL THERAPY (상악 중절치 근관치료후 수복 방법에 따른 응력 분포의 유한 요소 분석)

  • Lee, Jae-Young;Lee, Chung-Sik
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.549-567
    • /
    • 1994
  • Restoration of severly damaged teeth after endodontic treatment had been an interest to many dentists, and it is a fact that there have been lots of studies about it. In these days, although we have used Para-Post, pins, threaded steel post, cast gold post and core, and so on, as a method of restoration frequently, it has been in controversy with the influence of them on the teeth and surrounding periodontal tissue. In this study, we assume that the crown of the upper incisor have severly damaged, so, after the root canal therapy, 4 types of restoration had been carried out; 1) coronal-radicular amalgam restoration, 2) after setting up the Para-Post, restore with composite resin core only, 3) after setting up the Para-Post; restore with amalgam core, then cover with the PPM crown 4) after setting up the Para-Post, restore with composite core, then cover with the PPM crown. After restoration, in order to observe the concentration of stress at internal portion of the teeth and the sourrounding periodontal tissue, developing a 2-dimensional finite element model of labiopalatal section, then loading forces from 3 direction - direction of 45 degrees from lingual side near the incisal edge, horizontal direction from labial height of contour, vertical direction at the incisal edge-were applied. The analyzed results were as follows: 1. Stress of the normal central incisor was concentrated on the dentin aroundpulp chamber, labiocervical portion of a tooth and root apex, but with the alveolar bone, in the case of load from the direction of 45 degrees from lingual side near the incisal edge showed remarkable concentration of stress: 2. Coronal-radicular amalgam technique -showed less concentration of stress on the root and surrounding periodontal tissue than the restoration with the Para-Post. 3. The von Mises equivalent stress on the Para-Post showed maximum value at root-core junction rather than both ends and model with PPM restoration with amalgam core showed the least concentration of stress. Only the force from horizontal direction showed large shear stress on internal portion of the root, root apex and alveolar bone. 4. PPM crown with composite core rarely showed the concentration of stress on root and periodontal tissue. 5. As for alveolar bone, remarkable shear stress was concentrated on labial and palatal side by horizontal load.

  • PDF

Effect of the shades of background substructures on the overall color of zirconia-based all-ceramic crowns

  • Suputtamongkol, Kallaya;Tulapornchai, Chantana;Mamani, Jatuphol;Kamchatphai, Wannaporn;Thongpun, Noparat
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.319-325
    • /
    • 2013
  • PURPOSE. The objective of this study was to determine the effect of the color of a background substructure on the overall color of a zirconia-based all-ceramic crown. MATERIALS AND METHODS. Twenty one posterior zirconia crowns were made for twenty subjects. Seven premolar crowns and six molar crowns were cemented onto abutments with metal post and core in the first and second group. In the third group, eight molar crowns were cemented onto abutments with a prefabricated post and composite core build-up. The color measurements of all-ceramic crowns were made before try-in, before and after cementation. A repeated measure ANOVA was used for a statistical analysis of a color change of all-ceramic crowns at ${\alpha}$=.05. Twenty four zirconia specimens, with different core thicknesses (0.4-1 mm) were also prepared to obtain the contrast ratio of zirconia materials after veneering. RESULTS. $L^*$, $a^*$, and $b^*$ values of all-ceramic crowns cemented either on a metal cast post and core or on a prefabricated post did not show significant changes (P>.05). However, the slight color changes of zirconia crowns were detected and represented by ${\Delta}E{^*}_{ab}$ values, ranging from 1.2 to 3.1. The contrast ratios of zirconia specimens were 0.92-0.95 after veneering. CONCLUSION. No significant differences were observed between the $L^*$, $a^*$, and $b^*$ values of zirconia crowns cemented either on a metal cast post and core or a prefabricated post and composite core. However, the color of a background substructure could affect the overall color of posterior zirconia restorations with clinically recommended core thickness according to ${\Delta}E{^*}_{ab}$ values.

Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect

  • Katariya, Pankaj V.;Panda, Subrata Kumar
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.279-288
    • /
    • 2020
  • The computational post-buckling strength of the tilted sandwich composite shell structure is evaluated in this article. The computational responses are obtained using a mathematical model derived using the higher-order type of polynomial kinematic in association with the through-thickness stretching effect. Also, the sandwich deformation behaviour of the flexible soft-core sandwich structural model is expressed mathematically with the help of a generic nonlinear strain theory i.e. Green-Lagrange type strain-displacement relations. Subsequently, the model includes all of the nonlinear strain terms to account the actual deformation and discretized via displacement type of finite element. Further, the computer code is prepared (MATLAB environment) using the derived higher-order formulation in association with the direct iterative technique for the computation of temperature carrying capacity of the soft-core sandwich within the post-buckled regime. Further, the nonlinear finite element model has been tested to show its accuracy by solving a few numerical experimentations as same as the published example including the consistency behaviour. Lastly, the derived model is utilized to find the temperature load-carrying capacity under the influences of variable factors affecting the soft-core type sandwich structural design in the small (finite) strain and large deformation regime including the effect of tilt angle.

Post-fire test of precast steel reinforced concrete stub columns under eccentric compression

  • Yang, Yong;Xue, Yicong;Yu, Yunlong;Gong, Zhichao
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.111-122
    • /
    • 2019
  • This paper presents an experimental work on the post-fire behavior of two kinds of innovative composite stub columns under eccentric compression. The partially precast steel reinforced concrete (PPSRC) column is composed of a precast outer-part cast using steel fiber reinforced reactive powder concrete (RPC) and a cast-in-place inner-part cast using conventional concrete. Based on the PPSRC column, the hollow precast steel reinforced concrete (HPSRC) column has a hollow column core. With the aim to investigate the post-fire performance of these composite columns, six stub column specimens, including three HPSRC stub columns and three PPSRC stub columns, were exposed to the ISO834 standard fire. Then, the cooling specimens and a control specimen unexposed to fire were eccentrically loaded to explore the residual capacity. The test parameters include the section shape, concrete strength of inner-part, eccentricity ratio and heating time. The test results indicated that the precast RPC shell could effectively confine the steel shape and longitudinal reinforcements after fire, and the PPSRC stub columns experienced lower core temperature in fire and exhibited higher post-fire residual strength as compared with the HPSRC stub columns due to the insulating effect of core concrete. The residual capacity increased with the increasing of inner concrete strength and with the decreasing of heating time and load eccentricity. Based on the test results, a FEA model was established to simulate the temperature field of test specimens, and the predicted results agreed well with the test results.

Traditional approach with ceramic (임상가를 위한 특집 2 - 심미 수복 - 같은 결과, 다른 접근 세라믹을 이용한 전통적인 접근법)

  • Lee, Seung-Kyu
    • The Journal of the Korean dental association
    • /
    • v.51 no.11
    • /
    • pp.595-603
    • /
    • 2013
  • The requirements for the successful treatment of all-ceramic restorations are not so different from the ones of conventional restorations. "The provisional restoration followed by an adequate tooth reduction and the accurately fitting prostheses with corresponding to final impression" can be the examples of them. Nevertheless, the one which all-ceramic restorations are distinguished from conventional restorations is the additional procedure of so called "bonding". In addition to the application of resin cement between "inner surface of restoration and outer surface of abutment", bonding technology can be also applied to the treatment process of "Post and Core" in particular if the abutments are non-vital teeth. Core build-up for all-ceramic crown is conducted with fiber post and tooth colored composite by considering the properties of the restorations transmitting light. We know well that a vital abutment is easier than a non-vital one to get the targeted goals for clinical success in connection with esthetics and structure. The creation of "Post and Core" with bonding technique is a decisive factor for a long-term success if the abutment is non-vital tooth with dentinal collapse. I would like to share my clinical experience about "post & core build-up and all-ceramic restoration bonding" out of several success strategies of all-ceramic crown with this presentation.

Post-buckling analysis of sandwich FG porous cylindrical shells with a viscoelastic core

  • Foroutan, Kamran;Dai, Liming
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.349-367
    • /
    • 2022
  • In this research, an approach combining a semi-analytical method and an analytical method is presented to investigate the static and dynamic post-buckling behavior of the sandwich functionally graded (FG) porous cylindrical shells exposed to external pressure. The sandwich cylindrical shell considered is composed of a viscoelastic core and two FG porous (FGP) face layers. The viscoelastic core is made of Kelvin-Voigt-type material. The material properties of the FG porous face layer are considered continuous through each face thickness according to a porosity coefficient and a volume fraction index. Two types of sandwich FG porous viscoelastic cylindrical shells named Type A and Type B are considered in the research. Type A shell has the porosity evenly distributed across the thickness direction, and Type B has the porosity unevenly distributes across the thickness direction. The FG face layers are considered in two cases: outside metal surface, inside ceramic surface (OMS-ICS), and inside metal surface, outside ceramic surface (IMS-OCS). According to Donnell shell theory, von-Karman equation, and Galerkin's method, a discretized nonlinear governing equation is derived for analyzing the behavior of the shells. The explicit expressions for static and dynamic critical buckling loading are thus developed. To study the dynamic buckling of the shells, the governing equation is examined via a numerical approach implementing the fourth-order Runge-Kutta method. With a procedure presented by Budiansky-Roth, the critical load for dynamic post-buckling is obtained. The effects of various parameters, such as material and geometrical parameters, on the post-buckling behaviors are investigated.

COMPARISON OF MECHANICAL PROPERTIES OF VARIOUS POST AND CORE MATERIALS

  • Ahn Seung-Geun;Sorensen John A.
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.288-299
    • /
    • 2003
  • Statement of problem: Many kinds of post and core systems are in the market, but there are no clear selection criteria for them. Purpose: The purpose of this study was to compare the flexural strength and modulus of elasticity of core materials, and measure the bending strength of post systems made of a variety of materials. Material and Methods: The flexural strength and elastic modulus of thirteen kinds core buildup materials were measured on beams of specimens of $2.0{\times}2.0{\times}24{\pm}0.1mm$. Ten specimens per group were fabricated and loaded on an lnstron testing machine at a crosshead speed of 0.25mm/min. A test span of 20 mm was used. The failure loads were recorded and flexural strength calculated with the measured dimensions. The elastic modulus was calculated from the slopes of the linear portions of the stress-stram graphs. Also nine kinds commercially available prefabricated posts made of various materials with similar nominal diameters, approximately 1.25mm, were loaded in a three-point bend test until plastic deformation or failure occurred. Ten posts per group were tested and the obtained data were anaylzed with analysis of variance and compared with the Tukey multiple comparison tests. Results: Clearfil Photo Core and Luxacore had flexural strengths approaching amalgam, but its modulus of elasticity was only about 15% of that of amalgam. The strengths of the glass ionomer and resin modified glass ionomer were very low. The heat pressed glass ceramic core had a high elastic modulus but a relatively low flexural strength approximating that of the lower strength composite resin core materials. The stainless steel, zirconia and carbon fiber post exhibited high bending strengths. The glass fiber posts displayed strengths that were approximately half of the higher strength posts. Conclusion: When moderate amounts of coronal tooth structure are to be replaced by a post and core on an anterior tooth, a prefabricated post and high strength, high elastic modulus core may be suitable. CLINICAL IMPLICATIONS In this study several newly introduced post and core systems demonstrated satisfactory physical properties. However when the higher stress situation exists with only a minimal ferrule extension remaining a cast post and core or zirconia post and pressed core are desirable.

EFFECT OF SURFACE TREATMENTS OF FIBER POSTS ON BOND STRENGTH TO COMPOSITE RESIN CORES (섬유포스트의 표면 처리방법이 복합레진 코어와의 결합력에 미치는 영향)

  • Keum, Hye-Jo;Yoo, Hyun-Mi
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.3
    • /
    • pp.173-179
    • /
    • 2010
  • The purpose of the present study was to compare the influence of post-surface treatment with silane, hydrogen peroxide, hydrofluoric acid or sandblasting and to investigate the effect of silane in combination of the other treatments on the microtensile bond strength between fiber posts and composite resins for core build-up. Thirty-two glass-fiber posts (FRC Postec Plus, Ivoclar Vivadent, Schaan, Liechtenstein) were divided into eight groups according to the different surface pretreatments performed: silane application (S); immersion in 28% hydrogen peroxide (HP); immersion in hydrogen peroxide followed by application of silane (HP-S); immersion in 4% hydrofluoric acid gel (HF); immersion in hydrofluoric acid gel followed by application of silane (HF-S); sandblasting with aluminum oxide particles (SB); sandblasting followed by application of silane (SB-S). In control group, no surface treatment was performed. The composite resin (Tetric Flow, Ivoclar Vivadent, Schaan, Liechtenstein) was applied onto the posts to produce the composite cylinder specimen. It was sectioned into sticks to measure the microtensile bond strength. The data was analyzed with one-way ANOVA and LSD test for post hoc comparison (p < 0.05). Post pretreatment with sandblasting enhanced the interfacial strength between the fiber posts and core materials. Moreover, sandblasting followed by application of silane appears to be the most effective method that can improve the clinical performance of glass fiber posts.